Jonas Gedschold

and 4 more

This publication proposes a parametric data model and a gradient-based maximum likelihood estimator suitable for the description of delay-dispersive responses of multiple dynamic UWB-radar targets. The target responses are estimated jointly with the global target parameters range and velocity. The large relative bandwidth of UWB has consequences for model-based parameter estimation. On the one hand, the Doppler effect leads to a dispersive response in the Doppler spectrum and to a coupling of the target parameters which both need to be considered during modeling and estimation. On the other hand, the shape of an extended target results in a dispersive response in range which can be resolved by the radar resolution. We consider this extended response as a parameter of interest, e.g., for the purpose of target recognition. Hence, we propose an efficient description and estimation of it by an FIR structure only imposing a restriction on the target’s dispersiveness in range. We evaluate the approach on simulations, compare it to state of the art solutions and provide a validation on measurement data. © 2023 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works .