Livia Brandetti

and 4 more

The combined wind speed estimator and tip-speed ratio (WSE-TSR) tracking wind turbine control scheme has seen recent and increased traction from the wind industry. The modern control scheme provides a flexible trade-off between power and load objectives. In academia, the Kω2 controller is often used based on its simplicity and steady-state optimality and is taken as a baseline here. This paper demonstrates the steady-state equivalence and dynamic differences between these controllers and presents a systematic procedure for their optimal calibration. For calibration of the control schemes, a multi-objective optimisation problem is formulated with the conflicting objectives of power maximisation and torque fluctuations minimisation. The optimisation problem is solved by approximating the Pareto front based on the set of optimal solutions found by an explorative search. The Pareto fronts obtained for calibration of the baseline and for increasing fidelities of the WSE-TSR tracking controller show that no optimal solution exists, translating into increased power capture with respect to the baseline Kω2 controller. The frequency-domain analysis, however, shows increased control bandwidth for tip-speed ratio reference tracking for the solution leading to power maximisation. If the objective is to reduce the torque variance, the controller bandwidth decreases with a mild penalty on the energy yield. High-fidelity simulations confirm this trend, proving that, if properly calibrated, the WSE-TSR tracking controller obtains approximately the same generated power of the baseline while reducing torque actuation effort.
Economic model predictive control (EMPC) has received increasing attention in the wind energy community due to its ability to trade off economic objectives with ease. However, for wind turbine applications, inherent nonlinearities, such as from aerodynamics, pose difficulties in attaining a convex optimal control problem (OCP), by which real-time deployment is not only possible but also a globally optimal solution is guaranteed. A variable transformation can be utilized to obtain a convex OCP, where nominal variables, such as rotational speed, pitch angle, and torque, are exchanged with an alternative set in terms of power and energy. The ensuing convex EMPC (CEMPC) possesses linear dynamics, convex constraints, and concave economic objectives and has been successfully employed to address power control and tower fatigue alleviation. This work focuses on extending the blade loads mitigation aspect of the CEMPC framework by exploiting its individual pitch control (IPC) capabilities, resulting in a novel CEMPC-IPC technique. This extension is made possible by reformulating static blade and rotor moments in terms of individual blade aerodynamic powers and rotational kinetic energy of the drivetrain. The effectiveness of the proposed method is showcased in a mid-fidelity wind turbine simulation environment in various wind cases, in which comparisons with a basic CEMPC without load mitigation capability and a baseline IPC are made. Results indicate that CEMPC-IPC can achieve better reduction in rotating blade loads, as well as similar performance in the mitigation of shaft and yaw bearing loads, with the added advantage of convenient economic objectives trade-off tuning.