Daily Martinez

and 4 more

Species boundaries are difficult to establish in groups with very similar morphology. As an alternative, it has been suggested to integrate multiple sources of data to clarify taxonomic problems in taxa where cryptic speciation processes have been reported. This is the case of the harvest mouse Reithrodontomys mexicanus, which has a problematic taxonomy history as it is considered a complex species. Here, we evaluate the cryptic diversity of R. mexicanus using an integrative taxonomy approach in order to detect candidate lineages at the species-level. The molecular analysis used one mitochondrial (cytb) and two nuclear (Fgb-I7 and IRBP) genes. Species hypotheses were suggested based on three molecular delimitation methods (mPTP, bGMYC, and STACEY), and cytb genetic distances values. Skull and environmental space differences between the delimited species were also tested to complement the discrimination of candidate species. Based on the consensus across the delimitation methods and genetic distance values, four species were proposed, which were mostly supported by morphometric and ecological data: R. mexicanus clade I, R. mexicanus clade IIA, R. mexicanus clade IIIA, and R. mexicanus clade IIIB. In addition, the evolutionary relationships between the species that comprise the R. mexicanus group were discussed from a phylogenetic approach. Our findings present important taxonomic implications for Reithrodontomys, as the number of known species for this genus increases. Furthermore, we highlight the importance of the use of multiple sources of data in systematic studies to establish robust delimitations between species considered taxonomically complex.