Ariel Lena Morrison

and 2 more

Stratospheric aerosol injection (SAI has been proposed as a potential method for mitigating risks and impacts associated with anthropogenic climate change. One such risk is widespread permafrost thaw and associated carbon release. While permafrost has been shown to stabilize under different SAI scenarios, natural variability may lead to a wide range of projected climate futures under SAI. Here we use the 10-member ensemble from the ARISE-SAI-1.5 simulations to assess the spread in projected active layer depth and permafrost temperature across boreal permafrost soils and specifically in four peatland and Yedoma regions. The forced response in active layer depth and permafrost temperature quickly diverge between an SAI and non-SAI world, but individual ensemble members overlap for several years following SAI deployment. Projected permafrost variability may mask the forced response to SAI and make it difficult to detect if and when SAI is stabilizing permafrost in any single realization. We find that it may take more than a decade of SAI deployment to detect the effects of SAI on permafrost temperature and almost 30 years to detect its effects on active layer depth. Not only does natural variability make it more difficult to detect SAI’s influence, it could also affect the likelihood of reaching a permafrost tipping point. In some realizations, SAI fails to prevent a tipping point that is also reached in a non-SAI world. Our results underscore the importance of accounting for natural variability in assessments of SAI’s potential influence on the climate system.

Daniel M. Hueholt

and 4 more

Current global actions to reduce greenhouse gas emissions are very likely to be insufficient to meet the climate targets outlined under the Paris Agreement. This motivates research on possible methods for intervening in the Earth system to minimize climate risk while decarbonization efforts continue. One such hypothetical climate intervention is stratospheric aerosol injection (SAI), where reflective particles would be released into the stratosphere to cool the planet by reducing solar insolation. The climate response to SAI is not well understood, particularly on short-term time horizons frequently used by decision makers and planning practitioners to assess climate information. This knowledge gap limits informed discussion of SAI outside the scientific community. We demonstrate two framings to explore the climate response in the decade after SAI deployment in modeling experiments with parallel SAI and no-SAI simulations. The first framing, which we call a snapshot around deployment, displays change over time within the SAI scenarios and applies to the question “What happens before and after SAI is deployed in the model?” The second framing, the intervention impact, displays the difference between the SAI and no-SAI simulations, corresponding to the question “What is the impact of a given intervention relative to climate change with no intervention?” We apply these framings to annual mean 2-meter temperature, precipitation, and a precipitation extreme in the first two experiments to use large ensembles of Earth system models that comprehensively represent both the SAI injection process and climate response, and connect these results to implications for other climate variables.

Jared T. Trok

and 3 more

Soil moisture influences near-surface air temperature by partitioning downwelling radiation into latent and sensible heat fluxes, through which dry soils generally lead to higher temperatures. The strength of this coupled soil moisture-temperature (SM-T) relationship is not spatially uniform, and numerous methods have been developed to assess SM-T coupling strength across the globe. These methods tend to involve either idealized climate-model experiments or linear statistical methods which cannot fully capture nonlinear SM-T coupling. In this study, we propose a nonlinear machine learning-based approach for analyzing SM-T coupling and apply this method to various mid-latitude regions using historical reanalysis datasets. We first train convolutional neural networks (CNNs) to predict daily maximum near-surface air temperature (TMAX) given daily SM and geopotential height fields. We then use partial dependence analysis to isolate the average sensitivity of each CNN’s TMAX prediction to the SM input under daily atmospheric conditions. The resulting SM-T relationships broadly agree with previous assessments of SM-T coupling strength. Over many regions, we find nonlinear relationships between the CNN’s TMAX prediction and the SM input map. These nonlinearities suggest that the coupled interactions governing SM-T relationships vary under different SM conditions, but these variations are regionally dependent. We also apply this method to test the influence of SM memory on SM-T coupling and find that our results are consistent with previous studies. Although our study focuses specifically on local SM-T coupling, our machine learning-based method can be extended to investigate other coupled interactions within the climate system using observed or model-derived datasets.

Elizabeth A. Barnes

and 3 more