Naruki Hiranuma

and 4 more

We present our first laboratory calibration and field results of a newly developed commercial ice nucleation chamber, the so-called PINE. The PINE instrument is developed based on the design of the AIDA cloud chamber (Möhler et al., 2003) to advance online atmospheric ice nucleation research. A unique aspect of the PINE chamber includes its plug-and-play feature (so it runs on a standard power outlet), autonomous cryo-cooler-based temperature-ramping operation, capability of quantifying INPs in different IN modes (e.g., immersion freezing and deposition mode at >-60 °C), small particle loss through the system (~5% for <5 m diameter particles), and sensitive optical particle detection of INP concentration (≤0.1 L-1 at T > -15 °C), promising stand-alone operation at remote locations. To date, the PINE chamber has been calibrated using test aerosol particles with known properties (e.g., illite NX). Briefly, test particles were exposed to ice supersaturation conditions, where a mixture of droplets and ice crystals were formed during the ‘expansion’ experiment. A comparison of our calibration test results to other techniques will be presented. Further, the PINE instrument has been tested in field campaigns in the Southern Great Plains. With a turnover time of ~6 minutes, PINE ran continuously and scanned at different temperature intervals to assess different INP episodes. We made sure to assess at least a few degrees of common temperature interval in a series of scan. Our first field results will be shown. Our results suggest that using this autonomous instrument may be critical to minimize error sources in high-temperature and supermicron INP research. Acknowledgement: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (DE-SC0018979) – work packages 1-2 of Implications of Aerosol Physicochemical Properties Including Ice Nucleation at ARM Mega Sites for Improved Understanding of Microphysical Atmospheric Cloud Processes. References: • DeMott, P. J. et al. Resurgence in ice nuclei measurement research. Bull. Amer. Meteorol. Soc. 92, 1623, doi:10.1175/bams-d-10-3119.1 (2011). • Möhler, O. et al. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys. 3, 211-223 (2003).

Baptiste Testa

and 11 more

Here we present a multi-season study of ice nucleating particles (INPs) active via the immersion freezing mechanism, which took place in north central Argentina, a worldwide hotspot for mesoscale convective storms. INPs were measured untreated, after heating to 95 °C, and after hydrogen peroxide digestion. No seasonal cycle of INP concentrations was observed. Biological INPs (denatured by heat) dominated the population active at -5 to -20 °C, while non-heat-labile organic INPs (decomposed by peroxide) dominated at lower temperatures, from -20 to -28 °C. Inorganic INPs (remaining after peroxide digestion), were minor contributors to the overall INP activity. Biological INP concentration active around -12 °C peaked during rain events and under high relative humidity, reflecting emission mechanisms independent of the background aerosol concentration. The ratio of non-heat-labile organic and inorganic INPs was generally constant, suggesting they originated from the same source, presumably from regional arable topsoil based on air mass histories. Single particle mass spectrometry showed that soil particles aerosolized from a regionally-common agricultural topsoil contained known mineral INP sources (K-feldspar and illite) as well as a significant organic component. The INP activity observed in this study correlates well with agricultural soil INP activities from this and other regions of the world, suggesting that the observed INP spectra might be typical of many arable landscapes. These results demonstrate the strong influence of regional continental landscapes, emitting INPs of types that are not yet well represented in global models.