Surface-atmosphere fluxes and their drivers vary across space and time. A growing area of interest is in downscaling, localizing, and/or resolving sub-grid scale energy, water, and carbon fluxes and drivers. Existing downscaling methods require inputs of land surface properties at relatively high spatial (e.g., sub-kilometer) and temporal (e.g., hourly) resolutions, but many observed land surface drivers are not available at these resolutions. We evaluate an approach to overcome this challenge for land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key driver for surface heat fluxes. The Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. We downscaled LST from satellites (GOES-16 and ECOSTRESS) with further refinement using airborne hyperspectral imagery. Temporally and spatially downscaled LST compared well to observations from a network of 20 micrometeorological towers and airborne in addition to Landsat-based LST retrieval and drone-based LST observed at one tower site. The downscaled 50-meter hourly LST showed good relationships with tower (r2=0.79, precision=3.5 K) and airborne (r2=0.75, precision=2.4 K) observations over space and time, with precision lower over wetlands and lakes, and some improvement for capturing spatio-temporal variation compared to geostationary satellite. Further downscaling to 10 m using hyperspectral imagery resolved hotspots and cool spots on the landscape detected in drone LST, with significant improvement in precision by 1.3 K. These results demonstrate a simple pathway for multi-sensor retrieval of high space and time resolution LST.