Ryan Osborn

and 4 more

We use in situ measurements of suspended mud to assess the flocculation state of the lowermost freshwater reaches of the Mississippi River. The goal of the study was to assess the flocculation state of the mud in the absence of seawater, the spatial distribution of floc sizes within the river, and to look for seasonal differences between summer and winter. The data was also used to examine whether measured floc sizes could explain observed vertical distributions of suspended sediment concentration through a Rouse profile analysis. The surveys were conducted at the same location during summer and winter at similar discharges and suspended sediment concentrations, and in situ measures of the size distribution of the mud over the longitudinal, transverse, and vertical directions within the river were obtained using a specially developed underwater imaging system. These novel observations show that mud in the Mississippi is flocculated with median floc sizes ranging from 50 to 200 microns depending on location and season. On average flocs were found to be 40 microns larger during summer than in winter and to slightly increase in size moving downriver from the Bonnet Carré Spillway to Venice, LA. Floc size statistics varied little over the depth or laterally across the river at a given station. Bulk settling velocities calculated from size measurements matched values obtained from a Rouse profile analysis at stations with sandy beds, but underestimated settling velocities using the same equation parameters for measurements made during winter over muddy beds.

Sagy Cohen

and 5 more

Bedload flux is notoriously challenging to measure and model. The dynamics of bedload therefore remains largely unknown in most fluvial systems worldwide. We present a global scale bedload flux model as part of the WBMsed modeling framework. Our results show that the model can very well predict the distribution of water discharge and suspended sediment and well predict bedload. We analyze the model’s bedload predictions sensitivity to river slope, particle size, discharge, river width and suspended sediment. We found that the model is most responsive to spatial dynamics in river discharge and slope. We analyze the relationship between bedload and total sediment flux globally and in representative longitudinal river profiles (Amazon, Mississippi, and Lena Rivers). We show that while, as expected, the proportion of bedload is decreasing from headwater to the coasts, there is considerable variability between basins and along river corridors. The latter is largely responsive to changes in suspended sediment and river slope due to dams and reservoirs. We provide a new estimate of water and sediment fluxes to global oceans from 2,067 largest river outlets (draining 67% of the global continental mass). Estimated water discharge (30,579 km3/y) corresponds well to past estimates however sediment flux is considerably higher. Of the total 22 Gt/y estimated average sediment flux to global oceans, 19 Gt/y is transported as washload, 1 Gt/y as bedload, and 2 Gt/y as suspended bed material. The largest 25 rivers are predicted to transport over 55% of total sediment flux to global oceans.

Thomas Ashley

and 4 more

Estimates of fluvial sediment discharge from in situ instruments are an important component of large-scale sediment budgets that track long-term geomorphic change. Suspended sediment load can be reliably estimated using acoustic or physical sampling techniques; however, bedload is difficult to measure directly and can consequently be one of the largest sources of uncertainty in estimates of total load. We propose a physically-informed predictive empirical model for bedload sand flux as a function of variables that are measured using existing acoustic or physical sampling techniques. This model depends on the assumption that concentration and grain size in suspension are in equilibrium with reach-averaged boundary conditions. Bayesian inference is used to fit model parameters to data from eight sand-bed rivers and to simulate bedload flux over the available gage record at one site on the Colorado River in Grand Canyon National Park. We find that the cumulative bedload flux during the nine year period from 2008 to 2016 was 5\% of the cumulative suspended sand load; however, instantaneous bedload flux ranged from as little as 1\% of instantaneous suspended sand load to as much as 75\% of instantaneous suspended sand load due to fluctuations in flow strength and sediment supply. Changes in bedload flux at a constant discharge are indicative of short-term sediment supply enrichment and depletion. Long-term average bedload flux cannot be expected to remain constant in the future as the river adjusts to changes in sediment runoff and the dam-regulated discharge regime.