Talha Khan

and 7 more

Airborne dust, including Dust storms and weaker dust traces, can have deleterious and hazardous effects on human health, agriculture, solar power generation, and aviation. Although earth observing satellites are extremely useful in monitoring dust using visible and infrared imagery, dust is often difficult to visually identify in single band imagery due to its similarities to clouds, smoke, and underlying surfaces. Furthermore, night-time dust detection is a particularly difficult problem, since radiative properties of dust mimic those of the cooling, underlying surface. The creation of false-color red-green-blue (RGB) composite imagery, specifically the EUMETSAT Dust RGB, was designed to enhance dust detection through the combination of single bands and band differences into a single composite image. However, dust is still often difficult to identify in night-time imagery even by experts. We developed a Deep Learning, UNET image segmentation model to identify airborne dust at night leveraging six GOES-16 infrared bands, with a focus on infrared and water vapor bands.The UNET model architecture is an encoder-decoder Convolutional Neural Network that does not require large amounts of training data, localizes and contextualized image data for precise segmentation, and provides fast training time for high accuracy pixel level prediction. This presentation highlights collection of the training database, development of the model, and preliminary model validation. With further model development, validation, and testing in a real-time context, probability-based dust prediction could alert weather forecasters, emergency managers, and citizens to the location and extent of impending dust storms.

Gary Jedlovec

and 4 more

With the launch of the new Geostationary Operational Environmental Satellite-R (GOES-R) satellite series with the Advanced Baseline Imager (ABI) onboard both GOES-16, and -17 satellites, new capabilities are available at unprecedented temporal and spatial resolution from a geostationary-orbiting platform viewing North and South America. Measurements from three water vapor bands available from ABI presents a unique opportunity to assess the delineation in the vertical distribution of atmospheric moisture through multispectral (Red, Green, Blue, i.e., RGB) composites. Analysis of multispectral composites may provide improved capabilities to quickly identify specific features through qualitative analysis. The utilization of water vapor bands in the derivation of RGB imagery can be used to enhance thermodynamic and/or dynamical features associated with the development of significant weather events and hazards (e.g., cyclones, hurricanes, convection, turbulence) that are commonly found in single band water vapor analysis. The Air Mass RGB was developed with the launch of Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (SEVIRI) and is used to enhance regions of warm, dry, ozone rich stratospheric air associated with jet stream dynamics and tropopause folding that impact cyclone and hurricane intensity. With the launch of Himawari-8 Advanced Himawari Imager, the Japan Meteorological Agency developed a complimentary water vapor RGB, the Differential Water Vapor RGB, as a tool to assess the vertical distribution of water vapor in the atmosphere. This presentation will discuss the applications and advantages of the Air Mass and Differential Water Vapor RGB as complimentary tools for assessing thermodynamic and dynamical features associated with significant weather events.