Nora Loose

and 3 more

Oceanic quantities of interest (QoIs), e.g., ocean heat content or transports, are often inaccessible to direct observation, due to the high cost of instrument deployment and logistical challenges. Therefore, oceanographers seek proxies for undersampled or unobserved QoIs. Conventionally, proxy potential is assessed via statistical correlations, which measure covariability without establishing causality. This paper introduces an alternative method: quantifying dynamical proxy potential. Using an adjoint model, this method unambiguously identifies the physical origins of covariability. A North Atlantic case study illustrates our method within the ECCO (Estimating the Circulation and Climate of the Ocean) state estimation framework. We find that wind forcing along the eastern and northern boundaries of the Atlantic drives a basin-wide response in North Atlantic circulation and temperature. Due to these large-scale teleconnections, a single subsurface temperature observation in the Irminger Sea informs heat transport across the remote Iceland-Scotland ridge (ISR), with a dynamical proxy potential of 19%. Dynamical proxy potential allows two equivalent interpretations: Irminger Sea subsurface temperature (i) shares 19% of its adjustment physics with ISR heat transport; (ii) reduces the uncertainty in ISR heat transport by 19% (independent of the measured temperature value), if the Irminger Sea observation is added without noise to the ECCO state estimate. With its two interpretations, dynamical proxy potential is simultaneously rooted in (i) ocean dynamics and (ii) uncertainty quantification and optimal observing system design, the latter being an emerging branch in computational science. The new method may therefore foster dynamics-based, quantitative ocean observing system design in the coming years.

An T Nguyen

and 7 more

A description and assessment of the first release of the Arctic Subpolar gyre sTate Estimate (ASTE_R1), a data-constrained ocean-sea ice model-data synthesis is presented. ASTE_R1 has a nominal resolution of 1/3o and spans the period 2002-2017. The fit of the model to an extensive (O(10^9)) set of satellite and in situ observations was achieved through adjoint-based nonlinear least-squares optimization. The improvement of the solution compared to an unconstrained simulation is reflected in misfit reductions of 77% for Argo, 50% for satellite sea surface height, 58% for the Fram Strait mooring, 65% for Ice Tethered Profilers, and 83% for sea ice extent. Exact dynamical and kinematic consistency is a key advantage of ASTE_R1, distinguishing the state estimate from existing ocean reanalyses. Through strict adherence to conservation laws, all sources and sinks within ASTE_R1 can be accounted for, permitting meaningful analysis of closed budgets at the grid-scale, such as contributions of horizontal and vertical convergence to the tendencies of heat and salt. ASTE_R1 thus serves as the biggest effort undertaken to date of producing a specialized Arctic ocean-ice estimate over the 21st century. Transports of volume, heat, and freshwater are consistent with published observation-based estimates across important Arctic Mediterranean gateways. Interannual variability and low frequency trends of freshwater and heat content are well represented in the Barents Sea, western Arctic halocline, and east subpolar North Atlantic. Systematic biases remain in ASTE_R1, including a warm bias in the Atlantic Water layer in the Arctic and deficient freshwater inputs from rivers and Greenland discharge.

An T Nguyen

and 2 more

A regional data-constrained coupled ocean-sea ice general circulation model and its adjoint are used to investigate mechanisms controlling the volume transport variability through Bering Strait during 2002 to 2013. Comprehensive time-resolved sensitivity maps of Bering Strait transport to atmospheric forcing can be accurately computed with the adjoint along the forward model trajectory to identify spatial and temporal scales most relevant to the strait's transport variability. The simulated Bering Strait transport anomaly is found to be controlled primarily by the wind stress on short time-scales of order 1 month. Spatial decomposition indicates that on monthly time-scales winds over the Bering and the combined Chukchi and East Siberian Seas are the most significant drivers. Continental shelf waves and coastally-trapped waves are suggested as the dominant mechanisms for propagating information from the far field to the strait. In years with transport extrema, eastward wind stress anomalies in the Arctic sector are found to be the dominant control, with correlation coefficient of 0.94. This implies that atmospheric variability over the Arctic plays a substantial role in determining Bering Strait flow variability. The near-linear response of the transport anomaly to wind stress allows for predictive skill at interannual time-scales, thus potentially enabling skillful prediction of changes at this important Pacific-Arctic gateway, provided that accurate measurements of surface winds in the Arctic can be obtained. The novelty of this work is the use of space and time-resolved adjoint-based sensitivity maps, which enable detailed dynamical, i.e. causal attribution of the impacts of different forcings.

David Trossman

and 8 more

Mixing parameters can be inaccurate in ocean data assimilation systems, even if there is close agreement between observations and mixing parameters in the same modeling system when data are not assimilated. To address this, we investigate whether there are additional observations that can be assimilated by ocean modeling systems to improve their representation of mixing parameters and thereby gain knowledge of the global ocean’s mixing parameters. Observationally-derived diapycnal diffusivities–using a strain-based parameterization of finescale hydrographic structure–are included in the Estimating the Circulation & Climate of the Ocean (ECCO) framework and the GEOS-5 coupled Earth system model to test if adding observational diffusivities can reduce model biases. We find that adjusting ECCO-estimated and GEOS-5-calculated diapycnal diffusivity profiles toward profiles derived from Argo floats using the finescale parameterization improves agreement with independent diapycnal diffusivity profiles inferred from microstructure data. Additionally, for the GEOS-5 hindcast, agreement with observed mixed layer depths and temperature/salinity/stratification (i.e., hydrographic) fields improves. Dynamic adjustments arise when we make this substitution in GEOS-5, causing the model’s hydrographic changes. Adjoint model-based sensitivity analyses suggest that the assimilation of dissolved oxygen concentrations in future ECCO assimilation efforts would improve estimates of the diapycnal diffusivity field. Observationally-derived products for horizontal mixing need to be validated before conclusions can be drawn about them through similar analyses.
Mixing parameters can be inaccurate in ocean data assimilation systems, even if there is close agreement between observations and mixing parameters in the same modeling system when data are not assimilated. To address this, we investigate whether there are additional observations that can be assimilated by ocean modeling systems to improve their representation of mixing parameters and thereby gain knowledge of the global ocean’s mixing parameters. Observationally-derived diapycnal diffusivities–using a strain-based parameterization of finescale hydrographic structure–are included in the Estimating the Circulation & Climate of the Ocean (ECCO) framework and the GEOS-5 coupled Earth system model to test if adding observational diffusivities can reduce model biases. We find that adjusting ECCO-estimated and GEOS-5-calculated diapycnal diffusivity profiles toward profiles derived from Argo floats using the finescale parameterization improves agreement with independent diapycnal diffusivity profiles inferred from microstructure data. Additionally, for the GEOS-5 hindcast, agreement with observed mixed layer depths and temperature/salinity/stratification (i.e., hydrographic) fields improves. Dynamic adjustments arise when we make this substitution in GEOS-5, causing the model’s hydrographic changes. Adjoint model-based sensitivity analyses suggest that the assimilation of dissolved oxygen concentrations in future ECCO assimilation efforts would improve estimates of the diapycnal diffusivity field. Observationally-derived products for horizontal mixing need to be validated before conclusions can be drawn about them through similar analyses.

Timothy Smith

and 1 more

Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with the neighboring Indian and Pacific ocean basins. Moreover, the South Atlantic meridional overturning circulation basin-wide array (SAMBA) was recently launched to monitor variability in the South Atlantic MOC (SAMOC) at 34.5ºS. In this study, we are interested in understanding the processes which generate volume transport variability that would be observed at this latitude band. To perform this attribution, we compute sensitivities of the SAMOC at 34ºS to atmospheric state variables (e.g. wind stress, precipitation) using the adjoint of a global ocean model which is fit to a vast number of ocean observations over the past 20 years. These sensitivities isolate the impact from each atmospheric variable, and highlight the oceanic mechanisms, such as Kelvin and Rossby waves, which carry atmospheric forcing perturbations to the SAMOC. The domain of influence for the SAMOC is shown to be quite broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. We convolve historical forcing variability from ERA-Interim with the computed sensitivities in order to attribute seasonal to interannual SAMOC variability to each atmospheric component. The seasonal cycle of the SAMOC is therefore shown to be largely driven by local zonal wind forcing. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. We conclude with preliminary results which employ both modeling results and an analysis of modern altimetry observations to show how El Niño Southern Oscillation variability might influence the South Atlantic.