Jerome Guiet

and 4 more

The High Seas, lying beyond the boundaries of nations’ Exclusive Economic Zones, cover the majority of the ocean surface and host roughly two thirds of marine primary production. Yet, only a small fraction of global wild fish catch comes from the High Seas, despite intensifying industrial fishing efforts. The surprisingly small fish catch could reflect economic features of the High Seas - such as the difficulty and cost of fishing in remote parts of the ocean surface - or ecological features resulting in a small biomass of fish relative to primary production. We use the coupled biological-economic model BOATS to estimate contributing factors, comparing observed catches with simulations where: (i) fishing cost depends on distance from shore and seafloor depth; (ii) catchability depends on seafloor depth or vertical habitat extent; (iii) regions with micronutrient limitation have reduced biomass production; (iv) the trophic transfer of energy from primary production to demersal food webs depends on depth; and (v) High Seas biomass migrates to coastal regions. Our results suggest that the most important features are ecological: demersal fish communities receive a large proportion of primary production in shallow waters, but very little in deep waters due to respiration by small organisms throughout the water column. Other factors play a secondary role, with migrations having a potentially large but uncertain role, and economic factors having the smallest effects. Our results stress the importance of properly representing the High Seas biomass in future fisheries projections, and clarify their limited role in global food provision.

Julia L. Blanchard

and 42 more

There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long-term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio-temporal scales relevant to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world’s fisheries occur. Furthermore, previous FishMIP climate impact projections have mostly ignored fishing activity due to a lack of standardized historical and scenario-based human activity forcing and uneven capabilities to dynamically model fisheries across the FishMIP community. This, in addition to underrepresentation of coastal processes, has limited the ability to evaluate the FishMIP ensemble’s ability to adequately capture past states - a crucial step for building confidence in future projections. To address these issues, we have developed two parallel simulation experiments (FishMIP 2.0) on: 1) model evaluation and detection of past changes and 2) future scenarios and projections. Key advances include historical climate forcing, that captures oceanographic features not previously resolved, and standardized fishing forcing to systematically test fishing effects across models. FishMIP 2.0 is a key step towards a detection and attribution framework for marine ecosystem change at regional and global scales, and towards enhanced policy relevance through increased confidence in future ensemble projections.

Anh Le-Duy Pham

and 7 more

Release of iron (Fe) from continental shelves is a major source of this limiting nutrient for phytoplankton in the open ocean, including productive Eastern Boundary Upwelling Systems. The mechanisms governing the transport and fate of Fe along continental margins remain poorly understood, reflecting interaction of physical and biogeochemical processes that are crudely represented by global ocean biogeochemical models. Here, we use a submesoscale-permitting physical-biogeochemical model to investigate processes governing the delivery of shelf-derived Fe to the open ocean along the northern U.S. West Coast. We find that a significant fraction (∼20%) of the Fe released by sediments on the shelf is transported offshore, fertilizing the broader Northeast Pacific Ocean. This transport is governed by two main pathways that reflect interaction between the wind-driven ocean circulation and Fe release by low-oxygen sediments: the first in the surface boundary layer during upwelling events; the second in the bottom boundary layer, associated with pervasive interactions of the poleward California Undercurrent with bottom topography. In the water column interior, transient and standing eddies strengthen offshore transport, counteracting the onshore pull of the mean upwelling circulation. Several hot-spots of intense Fe delivery to the open ocean are maintained by standing meanders in the mean current and enhanced by transient eddies and seasonal oxygen depletion. Our results highlight the importance of fine-scale dynamics for the transport of Fe and shelf-derived elements from continental margins to the open ocean, and the need to improve representation of these processes in biogeochemical models used for climate studies.

Laure Resplandy

and 34 more

The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). Major advances have improved our understanding of the coastal air-sea exchanges of these three gasses since the first phase of the Regional Carbon Cycle Assessment and Processes (RECCAP in 2013), but a comprehensive view that integrates the three gasses at the global scale is still lacking. In this second phase (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ~60% larger in models (-0.72 vs. -0.44 PgC/yr, 1998-2018, coastal ocean area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e /yr in observational product and +0.54 PgCO2-e /yr in model median) and of CH4 (+0.21 PgCO2-e /yr in observational product), which offsets a substantial proportion of the net radiative effect of coastal \co uptake (35-58% in CO2-equivalents). Data products and models need improvement to better resolve the spatio-temporal variability and long term trends in CO2, N2O and CH4 in the global coastal ocean.

Faycal Kessouri

and 9 more

The Southern California Bight (SCB), an eastern boundary upwelling system, is impacted by global warming, acidification and deoxygetation, and receives anthropogenic nutrients from a coastal population of 20 million people. We describe the configuration, forcing, and validation of a realistic, submesoscale resolving ocean model as a tool to investigate coastal eutrophication. This modeling system represents an important achievement because it strikes a balance of capturing the forcing by U.S. Pacific Coast-wide phenomena, while representing the bathymetric features and submesoscale circulation that affect the vertical and horizontal transport of nutrients from natural and human sources. Moreover, the model allows to run simulations at timescales that approach the interannual frequencies of ocean variability, making the grand challenge of disentangling natural variability, climate change, and local anthropogenic forcing a tractable task in the near-term. The model simulation is evaluated against a broad suite of observational data throughout the SCB, showing realistic depiction of mean state and its variability with remote sensing and in situ physical-biogeochemical measurements of state variables and biogeochemical rates. The simulation reproduces the main structure of the seasonal upwelling front, the mean current patterns, the dispersion of plumes, as well as their seasonal variability. It reproduces the mean distributions of key biogeochemical and ecosystem properties. Biogeochemical rates reproduced by the model, such as primary productivity and nitrification, are also consistent with measured rates. Results of this validation exercise demonstrate the utility of fine-scale resolution modeling in support of management decisions on local anthropogenic nutrient discharges to coastal zones.

Daniel McCoy

and 4 more

Oceanic emissions of nitrous oxide (N2O) account for roughly one-third of all natural sources to the atmosphere. Hot-spots of N2O outgassing occur over oxygen minimum zones (OMZs), where the presence of steep oxygen gradients surrounding anoxic waters leads to enhanced N2O production from both nitrification and denitrification. However, the relative contributions from these pathways to N2O production and outgassing in these regions remains poorly constrained, in part due to shared intermediary nitrogen tracers, and the tight coupling of denitrification sources and sinks. To shed light on this problem, we embed a new, mechanistic model of the OMZ nitrogen cycle within a three-dimensional eddy-resolving physical-biogeochemical model of the ETSP, tracking contributions from remote advection, atmospheric exchange, and local nitrification and denitrification. Our results indicate that net N2O production from denitrification is approximately one order of magnitude greater than nitrification within the ETSP OMZ. However, only ~30% of denitrification-derived N2O production ultimately outgasses to the atmosphere in this region (contributing ~34% of the air-sea N2O flux on an annual basis), while the remaining is exported out of the domain. Instead, remotely-produced N2O advected into the OMZ region accounts for roughly half (~56%) of the total N2O outgassing, with smaller contributions from nitrification (~7%). Our results suggests that, together with enhanced production by denitrification, upwelling of remotely-derived N2O (likely produced via nitrification in the oxygenated ocean) contributes the most to N2O outgassing over the ETSP OMZ.

Pierre Damien

and 6 more

Daniel J Clements

and 6 more

Export of sinking particles from the surface ocean is critical for carbon sequestration and to provide energy to the deep biosphere. The magnitude and spatial patterns of this export have been estimated in the past by \emph{in situ} particle flux observations, satellite-based algorithms, and ocean biogeochemical models; however, these estimates remain uncertain. Here, we use a recent machine learning reconstruction of global ocean particle size distributions from Underwater Vision Profiler 5 (UVP5) measurements to estimate carbon fluxes by sinking particles (35 $\mu$m - 5 mm equivalent spherical diameter) from the surface ocean. We combine global maps of particle size distribution properties with empirical relationships constrained against \emph{in situ} flux observations to calculate particulate carbon export from the euphotic zone and wintertime mixed layer depths. The new flux reconstructions suggest a less variable seasonal cycle in the tropical ocean, and a more persistent export in the Southern Ocean than previously recognized. Smaller particles (less than 420 $\mu$m) contribute most of the flux globally, while larger particles become more important at high latitudes and in tropical upwelling regions. Export from the wintertime mixed layer globally exceeds that from the euphotic zone, suggesting shallow particle recycling and net heterotrophy in the deep euphotic zone. These estimates open the way to fully three-dimensional global reconstructions of particle fluxes in the ocean, supported by the growing database of \emph{in situ} optical observations.

Jacob Cram

and 13 more

Models and observations suggest that particle flux attenuation is lower across the mesopelagic zone of anoxic environments compared to oxic environments. Flux attenuation is controlled by microbial metabolism as well as aggregation and disaggregation by zooplankton, all of which also shape the relative abundance of differently sized particles. Observing and modeling particle spectra can provide information about the contributions of these processes. We measured particle size spectrum profiles at one station in the oligotrophic Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) using an underwater vision profiler (UVP), a high-resolution camera that counts and sizes particles. Measurements were taken at different times of day, over the course of a week. Comparing these data to particle flux measurements from sediment traps collected over the same time-period allowed us to constrain the particle size to flux relationship, and to generate highly resolved depth and time estimates of particle flux rates. We found that particle flux attenuated very little throughout the anoxic water column, and at some time-points appeared to increase. Comparing our observations to model predictions suggested that particles of all sizes remineralize more slowly in the ODZ than in oxic waters, and that large particles disaggregate into smaller particles, primarily between the base of the photic zone and 500 m. Acoustic measurements of multiple size classes of organisms suggested that many organisms migrated, during the day, to the region with high particle disaggregation. Our data suggest that diel-migrating organisms both actively transport biomass and disaggregate particles in the ODZ core.

Daniel J Clements

and 6 more