Laurence Y Yeung

and 7 more

Tropospheric 18O18O is an emerging proxy for past tropospheric ozone and free-tropospheric temperatures. The basis of these applications is the idea that isotope-exchange reactions in the atmosphere drive 18O18O abundances toward isotopic equilibrium. However, previous work used an offline box-model framework to explain the 18O18O budget, approximating the interplay of atmospheric chemistry and transport. This approach, while convenient, has poorly characterized uncertainties. To investigate these uncertainties, and to broaden the applicability of the 18O18O proxy, we developed a scheme to simulate atmospheric 18O18O abundances (quantified as ∆36 values) online within the GEOS-Chem chemical transport model. These results are compared to both new and previously published atmospheric observations from the surface to 33 km. Simulations using a simplified O2 isotopic equilibration scheme within GEOS-Chem show quantitative agreement with measurements only in the middle stratosphere; modeled ∆36 values are too high elsewhere. Investigations using a comprehensive model of the O-O2-O3 isotopic photochemical system and proof-of-principle experiments suggest that the simple equilibration scheme omits an important pressure dependence to ∆36 values: the anomalously efficient titration of 18O18O to form ozone. Incorporating these effects into the online ∆36 calculation scheme in GEOS-Chem yields quantitative agreement for all available observations. While this previously unidentified bias affects the atmospheric budget of 18O18O in O2, the modeled change in the mean tropospheric ∆36 value since 1850 C.E. is only slightly altered; it is still quantitatively consistent with the ice-core ∆36 record, implying that the tropospheric ozone burden increased less than ~40% over the twentieth century.

Asmita Banerjee

and 5 more

Ice cores and other paleotemperature proxies, together with general circulation models, have provided information on past surface temperatures and the atmosphere’s composition in different climates. Little is known, however, about past temperatures at high altitudes, which play a crucial role in Earth’s radiative energy budget. Paleoclimate records at high-altitude sites are sparse, and the few that are available show poor agreement with climate model predictions. These disagreements could be due to insufficient spatial coverage, spatiotemporal biases, or model physics; new records that can mitigate or avoid these uncertainties are needed. Here, we constrain the change in upper-tropospheric temperature at the global scale during the Last Glacial Maximum (LGM) using the clumped-isotope composition of molecular oxygen trapped in polar ice cores. Aided by global three-dimensional chemical transport modeling, we exploit the intrinsic temperature sensitivity of the clumped-isotope composition of atmospheric oxygen to infer that the upper troposphere (5 – 15 km altitude, effective mean 10 – 11 km) was 4 – 10°C cooler during the LGM than during the late preindustrial Holocene. These results support a minor or negligible steepening of atmospheric lapse rates during the LGM, which is consistent with a range of climate model simulations. Proxy-model disagreements with other high-altitude records may stem from inaccuracies in regional hydroclimate simulation, possibly related to land-atmosphere feedbacks.

Guang Zeng

and 20 more

We quantify the impacts of halogenated ozone-depleting substances (ODSs), methane, N2O, CO2, and short-lived ozone precursors on total and partial ozone column changes between 1850 and 2014 using CMIP6 Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) simulations. We find that whilst substantial ODS-induced ozone loss dominates the stratospheric ozone changes since the 1970s, the increases in short-lived ozone precursors and methane lead to increases in tropospheric ozone since the 1950s that make increasingly important contributions to total column ozone (TCO) changes. Our results show that methane impacts stratospheric ozone changes through its reaction with atomic chlorine leading to ozone increases, but this impact will decrease with declining ODSs. The N2O increases mainly impact ozone through NOx-induced ozone destruction in the stratosphere, having an overall small negative impact on TCO. CO2 increases lead to increased global stratospheric ozone due to stratospheric cooling. However, importantly CO2 increases cause TCO to decrease in the tropics. Large interannual variability obscures the responses of stratospheric ozone to N2O and CO2 changes. Substantial inter-model differences originate in the models’ representations of ODS-induced ozone depletion. We find that, although the tropospheric ozone trend is driven by the increase in its precursors, the stratospheric changes significantly impact the upper tropospheric ozone trend through modified stratospheric circulation and stratospheric ozone depletion. The speed-up of stratospheric overturning (i.e. decreasing age of air) is driven mainly by ODS and CO2; increases. Changes in methane and ozone precursors also modulate the cross-tropopause ozone flux.