We present general empirical analytical equations of bow shock structures historically used at Mars, and show how to estimate automatically the statistical position of the bow shock with respect to spacecraft data from 2D polar and 3D quadratic fits. Analytical expressions of bow shock normal in 2D and 3D are given for any point on the shock’s surface. This empirical technique is applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted bow shock location from ephemerides data is on average within 0.15 planetary radius Rp of the actual shock crossing as seen from magnetometer data. Using a simple predictor-corrector algorithm based on the absolute median deviation of the total magnetic field and the general form of quasi-perpendicular shock structures, this estimate is further refined to within a few minutes of the true crossing (≈0.05 Rp). With the refined algorithm, 14,929 bow shock crossings, predominantly quasi-perpendicular, are detected between 2014 and 2021. Analytical 2D conic and 3D quadratic surface fits, as well as standoff distances, are successively given for Martian years 32 to 35, for several (seasonal) solar longitude ranges and for two solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, it is shown that for Mars years 32 and 35, Ls = [135-225] degrees and high solar flux, it can become particularly noticeable and is superimposed to the usual North-South asymmetry due to the presence of crustal magnetic fields.
We present here an in-depth analysis of one time interval when quasi-linear mirror mode structures were detected by magnetic field and plasma measurements as observed by the NASA/Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We employ ion and electron spectrometers in tandem to support the magnetic field measurements and confirm that the signatures are indeed mirror modes. Wedged against the magnetic pile-up boundary, the low-frequency signatures lasted on average ~10 s with corresponding sizes of the order of 15-30 upstream solar wind proton thermal gyroradii, or 10-20 proton gyroradii in the immediate wake of the quasi-perpendicular bow shock. Their peak-to-peak amplitudes were of the order of 30-35 nT with respect to the background field, and appeared as a mixture of dips and peaks, suggesting that they may have been at different stages in their evolution. Situated in a marginally stable plasma with β|| ~ 1, we hypothesise that these so-called magnetic bottles, containing a relatively higher energy and denser ion population with respect to the background plasma, were formed upstream of the spacecraft behind the quasi-perpendicular shock. These signatures are very reminiscent of magnetic bottles found at other unmagnetised objects such as Venus and comets, also interpreted as mirror modes. Our case study constitutes the first unambiguous detection of mirror modes around Mars, which had up until now only been surmised because of the lack of high-temporal resolution plasma measurements.