Qijing Bian

and 9 more

Passive satellite observations play an important role in monitoring global aerosol properties and helping quantify aerosol radiative forcing in the climate system. The quality of aerosol retrievals from the satellite platform relies on well-calibrated radiance measurements from multiple spectral bands, and the availability of appropriate particle optical models. Inaccurate scattering phase function assumptions can introduce large retrieval errors. High-spatial resolution, dual-view observations from the Advanced Baseline Imagers (ABI) on board the two most recent Geostationary Operational Environmental Satellites (GOES), East and West, provide a unique opportunity to better constrain the aerosol phase function. Using dual GOES reflectance measurements for a dust event in the Gulf of Mexico in 2019, we demonstrate how a first-guess phase function can be reconstructed by considering the variations in observed scattering angle throughout the day. Using the reconstructed phase function, aerosol optical depth retrievals from the two satellites are self-consistent and agree well with surface-based optical depth estimates. We evaluate our methodology and reconstructed phase function against independent retrievals made from low-Earth-orbit multi-angle observations for a different dust event in 2020. Our new aerosol optical depth retrievals have a root-mean-square-difference of 0.028 – 0.087. Furthermore, the retrievals between the two geostationary satellites for this case agree within about 0.06±0.073, as compared to larger discrepancies between the operational GOES products, which do not employ the dual-view technique.

Yaping Zhou

and 4 more

The Dark-target (DT) aerosol algorithm retrieves spectral Aerosol Optical Depth (AOD) and other aerosol properties from Moderate-resolution Imaging Spectrometer (MODIS) reflectance observations. Over the ocean, the DT algorithm is known to contain scattering-angle-dependent biases in its retrievals of AOD, Angstrom Exponent (AE) and Fine Mode Fraction (FMF) for dust aerosols. Following a two-step strategy to improve the DT retrieval of dust over ocean, for which the first step is to identify dusty pixels (reported in ‘Part I’), in this ‘Part II’, we report on construction of a new dust model lookup table (LUT) and the strategy for applying it within the existing DT algorithm. In particular, we evaluate different characterizations of dust optical properties from a variety of frameworks and databases, and compare them with the current DT retrieval assumptions. Substituting the standard operational LUT with a spheroid dust model with identified dusty pixels shows significant improvement when compared with collocated AERONET-identified dusty pixels. The application of the new dust model to dusty pixels reduces their AOD bias from 0.06 to 0.02 while improving the fraction of retrievals within expected error (EE) from 64% to 82%. At the same time, the overall bias in AE is reduced from 0.13 to 0.06, and the scattering-angle-dependent AE bias is largely eliminated. In testing with wo full months of data (April and July), the new retrieval reduces the monthly mean AOD by up to 0.1 and 0.2 in the north Atlantic and Arabian seas, respectively. The average AE and FMF are also reduced.

Yaping Zhou

and 5 more