The Outer Continental Shelf of the Gulf of Mexico (GOM) is populated with numerous oil and natural gas (ONG) platforms which produce NOx (NOx = NO + NO2), a major component of air pollution. The Bureau of Ocean Energy Management (BOEM) is mandated to ensure that the air quality of coastal states is not degraded by these emissions. As part of a NASA-BOEM collaboration, we conducted a satellite data-based analysis of nitrogen dioxide (NO2) patterns and trends in the GOM. Data from the OMI and TROPOMI sensors were used to obtain 18+ year records of tropospheric column (TrC) NO2 in three GOM regions: 1) Houston urban area, 2) near shore area off the Louisiana coast, and a 3) deepwater area off the Louisiana coast. The 2004-2022 time series show a decreasing trend for the urban (-0.027 DU/decade) and near shore (-0.0022 DU/decade) areas, and an increasing trend (0.0019 DU/decade) for the deepwater area. MERRA-2 wind and TROPOMI NO2 data were used to reveal several NO2 hotspots (up to 25% above background values) under calm wind conditions near individual platforms. The NO2 signals from these deepwater platforms and the high density of shallow water platforms closer to shore were confirmed by TrC NO2 anomalies of up to 10%, taking into account the monthly TrC NO2 climatology over the GOM. The results presented in this study establish a baseline for future estimates of emissions from the ONG hotspots and provide a methodology for analyzing NO2 measurements from the new geostationary TEMPO instrument.

Anne M. Thompson

and 9 more

The Satellite Coastal and Oceanic Atmospheric Pollution Experiment (SCOAPE) cruise in the Gulf of Mexico (GOM) was conducted in May 2019 by NASA and the Bureau of Ocean Energy Management to determine the feasibility of using satellite data to measure air quality (AQ) in a region of concentrated oil and natural gas (ONG) operations. SCOAPE featured nitrogen dioxide (NO2) instrumentation (Pandora, Teledyne API analyzer) at Cocodrie, LA (29.26°, -90.66°), and on the Research Vessel Point Sur operating off the Louisiana coast with measurements of ozone, carbon monoxide (CO) and volatile organic compounds (VOC). The findings: (1) both satellite and Pandora NO2 observations revealed two AQ regimes over the GOM, the first influenced by tropical air in 10-14 May, the second influenced by flow from urban areas on 15-17 May; (2) Comparisons of OMI v4 and TROPOMI v1.3 TC (total column) NO2 data with all Pandora NO2 column observations on the Point Sur averaged 13% agreement with the largest difference during 15-17 May (~20%). At Cocodrie, LA, at the same time, the satellite-Pandora agreement was ~5%. (3) Three new-model Pandora instruments displayed a TC NO2 precision of 0.01 Dobson Units (~5%); (4) Regions of smaller and older operations displayed high methane (CH4) readings, presumably from leakage; VOC were also detected at high concentrations. Given an absence of regular AQ data in and near the GOM, SCOAPE data constitute a baseline against which future observations can be compared.