Shanshan Bao

and 10 more

The geospace plume, referring to the combined processes of the plasmaspheric and the ionospheric storm-enhanced density (SED)/total electron content (TEC) plumes, is one of the unique features of geomagnetic storms. The apparent spatial overlap and joint temporal evolution between the plasmaspheric plume and the equatorial mapping of the SED/TEC plume indicate strong magnetospheric-ionospheric coupling. However, a systematic modeling study of the factors contributing to geospace plume development has not yet been performed due to the lack of a sufficiently comprehensive model including all the relevant physical processes. In this paper, we present a numerical simulation of the geospace plume in the March 31, 2001 storm using the Multiscale Atmosphere Geospace Environment model. The simulation reproduces the observed linkage of the two plumes, which, we interpret as a result of both being driven by the electric field that maps between the magnetosphere and the ionosphere. The model predicts two velocity channels of sunward plasma drift at different latitudes in the dusk sector during the storm main phase, which are identified as the sub-auroral polarization stream (SAPS) and the convection return flow, respectively. The SAPS is responsible for the erosion of the plasmasphere plume and contributes to the ionospheric TEC depletion in the midlatitude trough region. We further find the spatial distributions of the magnetospheric ring current ions and electrons, determined by a delicate balance of the energy-dependent gradient/curvature drifts and the E´B drifts, are crucial to sustain the SAPS electric field that shapes the geospace plume throughout the storm main phase.

Anthony Sciola

and 10 more

The formation of the stormtime ring current is a result of the inward transport and energization of plasma sheet ions. Previous studies have demonstrated that a significant fraction of the total inward plasma sheet transport takes place in the form of bursty bulk flows (BBFs), known theoretically as flux tube entropy-depleted “bubbles.’ However, it remains an open question to what extent bubbles contribute to the buildup of the stormtime ring current. Using the Multiscale Atmosphere Geospace Environment (MAGE) Model, we present a case study of the March 17, 2013 storm, including a quantitative analysis of the contribution of plasma transported by bubbles to the ring current. We show that bubbles are responsible for at least 50\% of the plasma energy enhancement within 6 R$_E$ during this strong geomagnetic storm. The bubbles that penetrate within 6 R$_E$ transport energy primarily in the form of enthalpy flux, followed by Poynting flux and relatively little as bulk kinetic flux. Return flows can transport outwards a significant fraction of the plasma energy being transported by inward flows, and therefore must be considered when quantifying the net contribution of bubbles to the energy buildup. Data-model comparison with proton intensities observed by the Van Allen Probes show that the model accurately reproduces both the bulk and spectral properties of the stormtime ring current. The evolution of the ring current energy spectra throughout the modeled storm is driven by both inward transport of an evolving plasma sheet population and by charge exchange with Earth’s geocorona.

Dong Lin

and 14 more

Solar eruptions cause geomagnetic storms in the near-Earth environment, creating spectacular aurorae visible to the human eye and invisible dynamic changes permeating all of geospace. Just equatorward of the aurora, radars and satellites often observe intense westward plasma flows called subauroral polarization streams (SAPS) in the dusk-to-midnight ionosphere. SAPS occur across a narrow latitudinal range and lead to intense frictional heating of the ionospheric plasma and atmospheric neutral gas. SAPS also generate small-scale plasma waves and density irregularities that interfere with radio communications. As opposed to the commonly observed duskside SAPS, intense eastward subauroral plasma flows in the morning sector were recently discovered to have occurred during a super storm on 20 November 2003. However, the origin of these flows termed “dawnside SAPS” could not be explained by the same mechanism that causes SAPS on the duskside and has remained a mystery. Through real-event global geospace simulations, here we demonstrate that dawnside SAPS can only occur during major storm conditions. During these times the magnetospheric plasma convection is so strong as to effectively transport ions to the dawnside, whereas they are typically deflected to the dusk by the energy-dependent drifts. Ring current pressure then builds up on the dawnside and drives field-aligned currents that connect to the subauroral ionosphere, where eastward SAPS are generated. The origin of dawnside SAPS explicated in this study advances our understanding of how the geospace system responds to strongly disturbed solar wind driving conditions that can have severe detrimental impacts on human society and infrastructure.

Kevin Pham

and 14 more

Thermospheric mass density perturbations are commonly observed during geomagnetic storms. The sources of these perturbations have not been well understood. In this study, we investigated the thermospheric density perturbations observed by the CHAMP and GRACE satellites during the 24-25 August 2005 geomagnetic storm. The observations show that large neutral density enhancements occurred not only at high latitudes, but also globally. In particular, large density perturbations were seen in the equatorial regions away from the high-latitude, magnetospheric energy sources. We used the high-resolution Multiscale Atmosphere Geospace Environment (MAGE) model to reproduce the consecutive neutral density changes observed by the satellites during the storm. The MAGE simulation, which resolved mesoscale high-latitude convection electric fields and field-aligned currents, and included a physics-based specification of the auroral precipitation, was contrasted with a standalone ionosphere-thermosphere simulation driven by an empirical model of the high-latitude electrodynamics. The comparison demonstrates that a first-principles representation of highly dynamic and localized Joule heating events in a fully coupled whole geospace model such as MAGE is critical to accurately capturing both the generation and propagation of traveling atmospheric disturbances (TADs) that produce neutral density perturbations globally. In particular, the MAGE simulation shows that the larger density peaks in the equatorial region that are observed by CHAMP and GRACE are the results of TADs, generated at high latitudes in both hemispheres, propagating to and interfering at lower latitudes. This study reveals the importance of investigating thermospheric density variations in a fully coupled geospace model with sufficiently high resolving power.

Dong Lin

and 14 more

Strong subauroral plasma flows were observed in the dawnside ionosphere during the 20 November 2003 super geomagnetic storm. They are identified as dawnside subauroral polarization streams (SAPS) in which plasma drift direction is eastward and opposite to the westward SAPS typically found in the dusk sector. Both dawnside and duskside SAPS are driven by the enhanced meridional electric field in the low latitude portion of Region-2 field-aligned currents (FACs) in the subauroral region where ionospheric conductance is relatively low. However, dawnside eastward SAPS were only observed in the main and recovery phases while duskside westward SAPS were found much earlier before the sudden storm commencement. Simulations with the Multiscale Atmosphere-Geospace Environment (MAGE) model demonstrate that the eastward SAPS are associated with dawnside ring current build-up. Unlike the duskside where ring current build-up and SAPS formation can occur under moderate driving conditions, strong magnetospheric convection is required for plasmasheet ions to overcome their energy-dependent drifts to effectively build up the dawnside ring current and upward Region-2 FACs. We further used test particle simulations to show the characteristic drift pattern of energetic protons under strong convection conditions and how they are related to the dawnside SAPS occurrence. This study demonstrates the connection between the level of solar wind driving condition and a rare ionospheric structure, eastward SAPS on the dawnside, which only occur under strong convection typically associated with intense or super storms. Dawnside SAPS are suggested as a unique feature of major geomagnetic storms.

Fazlul I Laskar

and 10 more

Themospheric conditions during a minor geomagnetic event of 3 and 4 February 2022 has been investigated using disk temperature (T$_{disk}$) observations from Global-scale Observations of the Limb and Disk (GOLD) mission and model simulations. GOLD observed that the T$_{disk}$ increases by more than 60 K during the storm event when compared with pre-storm quiet days. A comparison of the T$_{disk}$ with effective temperatures (i.e., a weighted average based on airglow emission layer) from Mass Spectrometer Incoherent Scatter radar version 2 (MSIS2) and Multiscale Atmosphere-Geospace Environment (MAGE) models shows that MAGE outperforms MSIS2 during this particular event. MAGE underestimates the T$_{eff}$ by about 2\%, whereas MSIS2 underestimates it by 7\%. As temperature enhancements lead to an expansion of the thermosphere and resulting density changes, the value of the temperature enhancement observed by GOLD can be utilized to find a GOLD equivalent MSIS2 (GOLD-MSIS) simulation $\textendash$ from a set of MSIS2 runs obtained by varying geomagnetic ap index values. From the MSIS2 runs we find that an ap value of 116 nT produces a T$_{eff}$ perturbation that matches with the GOLD T$_{disk}$ enhancement. Note that during this storm the highest value of the 3 hr cadence ap was 56 nT. From the MSIS-GOLD run we found that the thermospheric density enhancement varies with altitude from 15\% (at 150 km) to 80\% (at 500 km). Independent simulations from the MAGE model also show a comparable enhancement in neutral density. These results suggest that even a modest storm could impact the thermospheric densities significantly.