Niels Fraehr

and 3 more

Accurate flood inundation modelling using a complex high-resolution hydrodynamic (high-fidelity) model can be very computationally demanding. To address this issue, efficient approximation methods (surrogate models) have been developed. Despite recent developments, there remain significant challenges in using surrogate methods for modelling the dynamical behaviour of flood inundation in an efficient manner. Most methods focus on estimating the maximum flood extent due to the high spatial-temporal dimensionality of the data. This study presents a hybrid surrogate model, consisting of a low-resolution hydrodynamic (low-fidelity) and a Sparse Gaussian Process (Sparse GP) model, to capture the dynamic evolution of the flood extent. The low-fidelity model is computationally efficient but has reduced accuracy compared to a high-fidelity model. To account for the reduced accuracy, a Sparse GP model is used to correct the low-fidelity modelling results. To address the challenges posed by the high dimensionality of the data from the low- and high-fidelity models, Empirical Orthogonal Functions (EOF) analysis is applied to reduce the spatial-temporal data into a few key features. This enables training of the Sparse GP model to predict high-fidelity flood data from low-fidelity flood data, so that the hybrid surrogate model can accurately simulate the dynamic flood extent without using a high-fidelity model. The hybrid surrogate model is validated on the flat and complex Chowilla floodplain in Australia. The hybrid model was found to improve the results significantly compared to just using the low-fidelity model and incurred only 39% of the computational cost of a high-fidelity model.

Emanuele Bevacqua

and 19 more

Compound weather and climate events are combinations of climate drivers and/or hazards that contribute to societal or environmental risk. Studying compound events often requires a multidisciplinary approach combining domain knowledge of the underlying processes with, for example, statistical methods and climate model outputs. Recently, to aid the development of research on compound events, four compound event types were introduced, namely (1) preconditioned, (2) multivariate, (3) temporally compounding, and (4) spatially compounding events. However, guidelines on how to study these types of events are still lacking. Here, based on a bottom-up approach, we consider four case studies, each associated with a specific event type and a research question, to illustrate how the key elements of compound events (e.g., analytical tools and relevant physical effects) can be identified. These case studies show that (1) impacts on crops from hot and dry summers can be exacerbated by preconditioning effects of dry and bright springs. (2) Assessing compound coastal flooding in Perth (Australia) requires considering the dynamics of a non-stationary multivariate process. For instance, future mean sea-level rise will lead to the emergence of concurrent coastal and fluvial extremes, enhancing compound flooding risk. (3) In Portugal, deep-landslides are often caused by temporal clusters of moderate precipitation events. Finally, (4) crop yield failures in France and Germany are strongly correlated, threatening European food security through spatially compounding effects. These analyses allow for identifying general recommendations for studying compound events. Overall, our insights can serve as a blueprint for compound event analysis across disciplines and sectors.