Yassir A. Eddebbar

and 5 more

In the tropical Pacific, weak ventilation and intense microbial respiration at depth give rise to a low dissolved oxygen (O2) environment that is thought to be ventilated primarily by the equatorial current system (ECS). The role of mesoscale eddies and diapycnal mixing as potential pathways of O2 supply in this region, however, remains poorly known due to sparse observations and coarse model resolution. Using an eddy resolving simulation of ocean circulation and biogeochemistry, we assess the contribution of these processes to the O2 budget balance and find that turbulent mixing of O2 and its modulation by mesoscale eddies contribute substantially to the replenishment of O2 in the upper equatorial Pacific thermocline, complementing the advective supply of O2 by the ECS and meridional circulation at depth. These transport processes are strongly sensitive to seasonal forcing by the wind, with elevated mixing of O2 into the upper thermocline during summer and fall when the vertical shear of the lateral flow and eddy kinetic energy are intensified. The tight link between eddy activity and the downward mixing of O2 arises from the modulation of equatorial turbulence by Tropical Instability Waves via their eddy impacts on the vertical shear. This interaction of ocean processes across scales sustains a local pathway of O2 delivery into the equatorial Pacific interior and highlights the need for adequate observations and model representation of turbulent mixing and mesoscale processes for understanding and predicting the fate of the tropical Pacific O2 content in a warmer and more stratified ocean.

Galen McKinley

and 4 more

The ocean has absorbed the equivalent of 39% of industrial-age fossil carbon emissions, significantly modulating the growth rate of atmospheric CO2 and its associated impacts on climate. Despite the importance of the ocean carbon sink to climate, our understanding of the causes of its interannual-to-decadal variability remains limited. This hinders our ability to attribute its past behavior and project its future. A key period of interest is the 1990s, when the ocean carbon sink did not grow as expected. Previous explanations of this behavior have focused on variability internal to the ocean or associated with coupled atmosphere/ocean modes. Here, we use an idealized upper ocean box model to illustrate that two external forcings are sufficient to explain the pattern and magnitude of sink variability since the mid-1980s. First, the global-scale reduction in the decadal-average ocean carbon sink in the 1990s is attributable to the slowed growth rate of atmospheric pCO2. The acceleration of atmospheric pCO2 growth after 2001 drove recovery of the sink. Second, the global sea surface temperature response to the 1991 eruption of Mt Pinatubo explains the timing of the global sink within the 1990s. These results are consistent with previous experiments using ocean hindcast models with and without forcing from variable atmospheric pCO2 and climate variability. The fact that variability in the growth rate of atmospheric pCO2 directly imprints on the ocean sink implies that there will be an immediate reduction in ocean carbon uptake as atmospheric pCO2 responds to cuts in anthropogenic emissions.

Amanda R Fay

and 7 more

Large volcanic eruptions drive significant climate perturbations through major anomalies in radiative fluxes and the resulting widespread cooling of the surface and upper ocean. Recent studies suggest that these eruptions also drive important variability in air-sea carbon and oxygen fluxes. By simulating the Earth system using two initial-condition large ensembles, with and without the aerosol forcing associated with the Mt. Pinatubo eruption in June 1991, we isolate the impact of this event on ocean physical and biogeochemical properties. The Mt. Pinatubo eruption generated significant anomalies in surface fluxes and the ocean interior inventories of heat, oxygen, and carbon. Pinatubo-driven changes persist for multiple years in the upper ocean and permanently modify the ocean’s heat, oxygen, and carbon inventories. Positive anomalies in oxygen concentrations emerge immediately post-eruption and penetrate into the deep ocean. In contrast, carbon anomalies intensify in the upper ocean over several years post-eruption, and are largely confined to the upper 150 m. In the tropics and northern high latitudes, the change in oxygen is dominated by surface cooling and subsequent ventilation to mid-depths, while the carbon anomaly is associated with solubility changes and eruption-generated ENSO variability. Our results indicate that Pinatubo does not substantially impact oxygen or carbon in the Southern Ocean; forced signals do not emerge from the large internal variability in this region.