Qingyu Zhu

and 5 more

In this study, a new high-latitude empirical model is introduced, named for Auroral energy Spectrum and High-Latitude Electric field variabilitY (ASHLEY). This model aims to improve specifications of soft electron precipitations and electric field variability that are not well represented in existing high-latitude empirical models. ASHLEY consists of three components, ASHLEY-A, ASHLEY-E and ASHLEY-Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high-latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY-A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY-E and ASHLEY-Evar components, respectively. This is different from most existing electric field models which only focus on the large-scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY.

Jason Li

and 2 more

Far ultraviolet (FUV) imaging of the aurora from space provides great insight into dynamic coupling of the atmosphere, ionosphere and magnetosphere on global scales. To gain quantitative understanding of these coupling processes, the global distribution of auroral energy flux is required, but the inversion of FUV emission to derive precipitating auroral particles’ energy flux is not straightforward. Furthermore, the spatial coverage of FUV imaging from Low Earth Orbit (LEO) altitudes is often insufficient to achieve global mapping of this important parameter. This study seeks to fill these gaps left by the current geospace observing system using a combination of data assimilation and machine learning techniques. Specifically, this paper presents a new data-driven modeling approach to create instantaneous, global assimilative mappings of auroral electron total energy flux from Lyman-Birge-Hopfield (LBH) emission data from the Defense Meteorological System Program (DMSP) Special Sensor Ultraviolet Spectrographic Imager (SSUSI). We take a two-step approach; the creation of assimilative maps of LBH emission using optimal interpolation, followed by the conversion to energy flux using a neural network model trained with conjunction observations of in-situ auroral particles and LBH emission from the DMSP SSJ and SUSSI instruments. The paper demonstrates the feasibility of this approach with a model prototype built with DMSP data from February 17-23 2014. This study serves as a blueprint for a future comprehensive data-driven modeling of auroral energy flux that is complementary to traditional inversion techniques to take advantage of FUV imaging from LEO platforms for global assimilative mapping of auroral energy flux.

Liam Kilcommons

and 3 more

Previous studies have shown that Strong Thermal Emission Velocity Enhancement (STEVE) events occur at the end of a prolonged substorm expansion phase. However, the connection between STEVE occurrence and substorms and the global high-latitude ionospheric electrodynamics associated with the development of STEVE and non-STEVE substorms are not yet well understood. The focus of this paper is to identify electrodynamics features that are unique to STEVE events through a comprehensive analysis of ionospheric convection patterns estimated from SuperDARN plasma drift and ground-based magnetometer data using the Assimilative Mapping of Geospace Observations (AMGeO) procedure. Results from AMGeO are further analyzed using principal component analysis and superposed epoch analysis for 32 STEVE and 32 non-STEVE substorm events. The analysis shows that the magnitude of cross-polar cap potential drop is generally greater for STEVE events. In contrast to non-STEVE substorms, the majority of STEVE events investigated accompany with a pronounced extension of the dawn cell into the pre-midnight subauroral latitudes, reminiscent of the Harang reversal convection feature where the eastward electrojet overlaps with the westward electrojet, which tends to prolong over substorm expansion and recovery phases. This is consistent with the presence of an enhanced subauroral electric field confirmed by previous STEVE studies. The global and localized features of high-latitude ionospheric convection associated with optical STEVE events characterized in this paper provide important insights into cross-scale magnetosphere-ionosphere coupling mechanisms that differentiate STEVE events from non-STEVE substorm events.