Temilola Fatoyinbo

and 30 more

In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1 hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform Lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.

Abigail Barenblitt

and 10 more

Gold mining has played a significant role in Ghana’s economy for centuries. Regulation of this industry has varied over time and while large-scale mining is prevalent in the country, prevalence of artisanal mining, or Galamsey has escalated throughout Ghana in recent years. These mines are not only harmful to human health due to the use of Mercury in the amalgamation process, but also leave a significant footprint on terrestrial ecosystems, degrading and destroying forested ecosystems in the region. This study used machine learning and Google Earth Engine to quantify the footprint of artisanal gold mines in Ghana and understand how conversion of forested regions to mining has changed from 2002-2019. We used Landsat imagery and a random forest classification to classify areas of anomalous NDVI loss during this time period and used WorldView image collections to assess the accuracy of the model. We then used a 3-year moving average to calculate the year of maximum derivative NDVI values. We used this calculation to identify the year of conversion to mining. Within the study area of Southwestern Ghana, our analysis showed that approximately 35,000 ha of vegetation were converted to mining. The majority of this mining occurred between 2014 and 2017. Additionally, around 700 ha ha of mining occurred within protected areas defined by the World Database on Protected Areas. Often, artisanal mining appears to be co-located with rivers such as the Orin and Ankobra Rivers, demonstrating the potential of these mines to affect access to clean drinking water. Through the process of gold extraction, these mines leave a distinct footprint with a series of ponds following these major rivers. However, while the footprints of these ponds are spatially distinct, our model does not distinguish between active and inactive ponds if no remediation actions are taken following inactivity. Future research should work towards distinguishing between active and inactive mining sites to better understand current levels of mining activity in Ghana.