Renzhi Jing

and 8 more

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the long-term hazard of rare high-impact storm events. Existing downscaling approaches rely on statistical or statistical-deterministic models that are capable of generating large samples of synthetic storms with characteristics similar to observed storms. However, these models do not capture the complex two-way interactions between a storm and its environment. In addition, these approaches either necessitate a separate TC size model to simulate storm size or involve post-processing to introduce asymmetries in the simulated surface wind. In this study, we present an innovative data-driven approach for TC synthetic downscaling. Using a machine learning-based high-resolution global weather model (ML-GWM), our approach is able to simulate the full life cycle of a storm with asymmetric surface wind that accounts for the two-way interactions between the storm and its environment. This approach consists of multiple components: a data-driven model for generating synthetic TC seeds, a blending method that seamlessly integrate storm seeds into the surrounding while maintain the seed structure, and a recurrent neural network-based model for correcting the biases in maximum wind speed. Compared to observations and synthetic storms simulated using existing statistical-deterministic and statistical downscaling approaches, our method shows the ability to effectively capture many aspects of TC statistics, including track density, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of the computational efficiency of ML-GWM, our approach shows substantial potential for TC regional hazard and risk assessment.

Avantika Gori

and 2 more

Compound flooding, characterized by the co-occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio-temporal dynamics between rainfall-runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics driven approach that utilizes a large set of realistic TC events and a simplified physical rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100-yr flood depths across 28% of the floodplain, and taking the max of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge-dominated, upstream portions of small streams and pluvial areas are rainfall-dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge-dominated for lower return periods but compounding zones for high return periods (100-yrs). Our method links joint rainfall-surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments.