Erik Behrens

and 4 more

Knowledge about the early life history of Antarctic toothfish (Dissostichus mawsoni) is still incomplete, particularly on the spatial and temporal extent of spawning and the subsequent transport of eggs and juveniles from the offshore spawning areas to the continental shelf. This study used a high-resolution hydrodynamic model to investigate the impact of ocean circulation and sea-ice drift on the dispersal of eggs and juvenile Antarctic toothfish. The virtual eggs were released on seamounts of the Pacific-Antarctic ridge in the northern Ross Sea and advected using hydrodynamical model data. Particles were seeded annually over a 14-year period (2002 to 2016) and tracked for three years after release. Spawning success was evaluated based on the number of juveniles that reached known coastal recruitment areas, in the eastern Ross and Amundsen Sea, within three years. Observations show that juveniles (50-100 cm size class) are abundant on the shelf and slope of the Ross and Amundsen Seas. Sensitivities to certain juvenile behaviours were explored and showed that spawning success was reduced by around 70% if juveniles drifted with sea-ice during the second winter season as this carried them into the open ocean away from the shelf region. Spawning success increased during the second winter season if juveniles were entrained in the Ross Gyre circulation or if they actively swam towards the shelf. These modelling results suggest that the ecological advantage of sea-ice association in the early life cycle of toothfish diminishes as they grow, promoting a behaviour change during their second winter.

Katie St. John Glew

and 15 more

Polar marine ecosystems are particularly vulnerable to the effects of climate change. Warming temperatures, freshening seawater and disruption to sea ice formation potentially all have detrimental cascading effects on food webs. New approaches are needed to better understand spatio-temporal interactions among biogeochemical processes at the base of Southern Ocean food webs, and how these interactions vary seasonally. In marine systems, isoscapes (models of the spatial variation in the stable isotopic composition) of carbon and nitrogen identify the spatial expression of varying biogeochemical processes on nutrient utilization by phytoplankton. Isoscapes also provide a baseline for interpreting stable isotope compositions of higher trophic level animals in movement, migration and diet research. Here we produce carbon and nitrogen isoscapes across the entire Southern Ocean (>40°S) using surface particulate organic matter (POM) isotope data, collected from multiple sources over the past 50 years and throughout the annual cycle. We use Integrated Nested Laplace Approximation (INLA)-based approaches to predict mean annual isoscapes and four seasonal isoscapes using a suite of environmental data as predictor variables. Clear spatial gradients in δ13C and δ15N values were predicted across the Southern Ocean, consistent with previous statistical and mechanistic isoscape views of isotopic variability in this region. We identify strong seasonal variability in both carbon and nitrogen isoscapes, with key implications for the use of static or annual average isoscape baselines in animal studies attempting to document seasonal migratory or foraging behaviours.