Laura M. Whitmore

and 15 more

What controls the distribution of barium (Ba) in the oceans? Answers to this question have been sought since early studies revealed relationships between particulate Ba (pBa) and POC and dissolved Ba (dBa) and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. Herein, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ~50% of the dBa inventory (upper 500 m of the Arctic water column) is not supplied by conservatively advected inputs. Calculated areal dBa fluxes are up to 10 µmol m-2 d-1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. Surprisingly, the Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin-bay derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a terrigenous source (e.g., submarine groundwater discharge or fluvial particles) is an important contributor

Christopher Hayes

and 28 more

Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230 Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global dataset of 230 Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive global maps of the burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), non-biogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of burial of the major components are mainly consistent with prior work, but the new quantitative estimates allow evaluations of global deep-sea burial. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides more detailed information on burial fluxes, which should lead to improvements in the understanding of how preservation affects these paleoproxies.