Joshua McCurry

and 4 more

Over recent years, remote sensing of sea ice has advanced at a rapid pace. However, there are inherent limitations in the ability of existing space and airborne sensors to observe changes in the properties of near-shore sea ice, especially over short (hourly) time scales. This information is of critical importance to the livelihood of local communities and to meteorologists who depend on knowledge of near-shore ice conditions for weather prediction. The use of near-real-time data from coastal seismic arrays promises to advance coastal ice observations by measuring the amplitude of background seismic noise, known as microseism. The microseism signal is generated by interactions between oceanic waves, the ocean floor, and the shoreline. Previous studies have shown that along polar coastlines the microseism is modulated by the presence of sea ice. In this feasibility study, we explore the use of power spectral density (PSD) measurements from the Utqiagvik station of the EarthScope Transportable Array (TA) to provide information about sea ice conditions off the northern coast of Alaska. PSD signals are compared with daily estimates of near-shore ice extent and concentration within the Beaufort and Chukchi seas. These are derived from satellite passive microwave radiometer data as well as visible and short-wave infrared imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. The amplitude of microseism at a frequency near 1 Hz is statistically correlated with ice coverage to determine if microseismic signals from a coastal station can be used to reliably identify particular ice events, including the onset date of summer melt, fast-ice breakup and formation, and the development of near-shore flaw-leads and polynas. Data from the Utqiagvik TA station is compared with observations from other northern coastal stations to determine if sea ice related microseismic signals are consistent across a range of geological and topographical environments. The expansion of the EarthScope TA seismic network to the Arctic coastline since 2011 presents a developing approach to sea ice observation. In the future it may complement established remote sensing techniques to provide a more complete picture of coastal ice conditions as they evolve.

Woodward Robert

and 6 more

Over the past third of a century the Incorporated Research Institutions for Seismology (IRIS) has facilitated observational seismology in many ways. At the beginning of IRIS in 1984, and with the support of the National Science Foundation and in partnership with the US Geological Survey, IRIS embarked on deploying the Global Seismographic Network (GSN). Key characteristics of the GSN are its use of high-performance digitizers, very broad band seismometers, strong motion accelerometers, and high frequency sensors to provide multi-decadal observations across a wide frequency band and dynamic range. The IRIS Portable Array Seismic Studies of the Continental Lithosphere (PASSCAL) program has also operated since 1984. PASSCAL’s extensive inventory of seismic equipment has been used by scientists to make observations on every part of the globe. The number and breadth of observations made with this equipment has fueled thousands of research papers and contributed to the education of hundreds, if not thousands, of students. More recently, the IRIS-operated EarthScope Transportable Array (TA) provided a breakthrough in the systematic collection of data using an array of unprecedented size. The success of the TA has ushered in a new era of “Large N” seismology, focused on dense spatial coverage of sensors to reduce aliasing and provide more complete recording of the full wavefield. The TA highlighted the power of survey mode data collection, where systematic, spatially-dense, and high-quality data fuel data-driven discovery, as opposed to deployments made to test a specific hypothesis. Key future directions in observational seismology include an increasing emphasis on wavefield measurements. Deploying instruments in large numbers requires reductions in the size, weight, and power of units, as well as a focus on dirt-to-desktop data management strategies that merge data and metadata while minimizing human intervention with the data flow from the sensor in the dirt to the scientist’s desktop. Other critical frontiers include pervasive seafloor observations to enable studies of key structures like subduction zones, more accessible satellite telemetry to enable ubiquitous sensing of the environment, and new sensing technologies such as MEMS and Distributed Acoustic Sensing.