Nils Brueggemann

and 10 more

Tido Semmler

and 13 more

The Alfred Wegener Institute Climate Model (AWI-CM) participates for the first time in the Coupled Model Intercomparison Project (CMIP), CMIP6. The sea ice-ocean component, FESOM, runs on an unstructured mesh with horizontal resolutions ranging from 8 to 80 km. FESOM is coupled to the Max-Planck-Institute atmospheric model ECHAM 6.3 at a horizontal resolution of about 100 km. Using objective performance indices, it is shown that AWI-CM performs better than the average of CMIP5 models. AWI-CM shows an equilibrium climate sensitivity of 3.2°C, which is similar to the CMIP5 average, and a transient climate response of 2.1°C which is slightly higher than the CMIP5 average. The negative trend of Arctic sea ice extent in September over the past 30 years is 20-30% weaker in our simulations compared to observations. With the strongest emission scenario, the AMOC decreases by 25% until the end of the century which is less than the CMIP5 average of 40%. Patterns and even magnitude of simulated temperature and precipitation changes at the end of this century compared to present-day climate under the strong emission scenario SSP585 are similar to the multi-model CMIP5 mean. The simulations show a 11°C warming north of the Barents Sea and around 2 to 3°C over most parts of the ocean as well as a wetting of the Arctic, subpolar, tropical and Southern Ocean. Furthermore, in the northern mid-latitudes in boreal summer and autumn as well as in the southern mid-latitudes a more zonal atmospheric flow is projected throughout the year.

Narges Khosravi

and 6 more

We examine the historical and projected hydrography in the deep basin of the Arctic Ocean in 23 climate models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and too thick among the majority of the models and in the multi-model mean (MMM). Moreover, the halocline is too fresh in the MMM. These issues indicate that there is no visible improvement in the representation of Arctic hydrography in the CMIP6 compared to the CMIP5. The climate projections reveal that the sub-Arctic seas are outstanding warming hotspots, supplying a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged in the upper 700 m till the end of the 21st century in the Arctic Ocean is about 40% and 60% higher than the global mean in the SSP245 and SSP585 scenarios, respectively. Comparing the AW temperature in the present day with its future change among the models shows that the temperature climate change signals are not sensitive to the model biases in the present-day simulations. The upper-ocean salinity is projected to become fresher in the Arctic deep basin in the MMM. However, the salinity spread is rather large and the tendency toward stronger upper ocean stratification in the MMM is not shared among all the models. The identified hydrography biases and spread call for a collective effort for systematic improvements of coupled model simulations.

Narges Khosravi

and 6 more