Sophie Bodek

and 3 more

Based on well-developed hydraulic geometry relations for width and depth, classic studies initially interpreted the Mid-Atlantic White Clay Creek (WCC) as a quasi-equilibrium, alluvial channel. Subsequent studies document the legacy of colonial-age watershed disturbances and urban development, confounding earlier classifications. To investigate this matter, we contribute new data from reach-scale geomorphic mapping, and observations and modeling of bed material transport. WCC’s longitudinal profile reflects a history of bedrock incision, while hydraulic geometry equations for width and depth indicate quasi-equilibrium cross-sectional adjustment. Alluvial landforms such as pools and riffles, bars, and actively forming floodplains occur at all 12 study sites, but exposures of bedrock and colluvium are also common. The ratio of bankfull to threshold Shields stress averages 1.41 (range 0.41-2.63), suggesting that WCC is an alluvial, threshold, gravel-bed river. However, a numerical model of WCC bed material transport and grain size, calibrated to bedload tracer data, demonstrates that 22% (range 8-73%) of bed material is composed of immobile, locally sourced cobbles and boulders, while the remaining bed material represents mobile, sand to cobble-sized alluvium; this leads us to classify WCC as a semi-alluvial river. Additional computations suggest that channel morphology is insensitive to bed material supply. Field observations imply that bankfull Shields stresses do not represent channel adjustments to achieve stable banks; rather, width adjustment likely reflects cohesive bank processes. Despite the numerous and contradictory labels applied to WCC (i.e., quasi-equilibrium, Anthropocene, bedrock, semi-alluvial, gravel-bed), each term contributes insight that any single conceptual model would be unable to provide alone.

Sophie Bodek

and 3 more

The Shields parameter based on median grain size D50 and bankfull depth is often used to interpret river morphology, but it may not always be a useful index of sediment transport processes. At 12 sites of the White Clay Creek (WCC), PA, the ratio of bankfull Shields stress to threshold Shields stress averages 1.41 (range 0.41-2.63), suggesting that these channels are alluvial near-threshold gravel-bed rivers. However, field mapping indicates confinement by bedrock and colluvium, and a channel slope dominated by bedrock incision and knickpoint migration. A numerical model of WCC bed material transport and grain size, calibrated to bedload tracer data, demonstrates that 22% (range 8-73%) of the bed material is composed of a population of immobile cobble and boulder-sized sediment supplied through local colluvial processes and bedrock erosion, and a separate population of mobile sand, pebble- and cobble-sized alluvium. Computations also suggest that channel morphology is only weakly coupled to upstream sediment supply. Additional analyses further imply that width adjustment may reflect a balance between cohesive bank erosion and floodplain deposition, though channels nonetheless may be closely scaled by cohesive bank erosion thresholds. WCC represents an example of a continuum of underappreciated, but relatively common, threshold alluvial-colluvial-bedrock rivers with partially immobile beds and widths scaled by cohesive bank erosion thresholds. Fluvial geomorphologists will need to look beyond simple sediment transport metrics to fully understand and classify these stream channels.