Heiner Kuhl

and 31 more

The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.

Peter Euclide

and 6 more

Local adaptation is often facilitated by loci clustered in relatively few regions of the genome, termed genomic islands of divergence. However, the mechanisms that create, mold, and maintain these islands are poorly understood. Here, we use sockeye salmon as a model species to investigate the mechanisms responsible for creating islands of divergence linked to adaptive variation. Previous research suggests that multiple islands are involved in adaptive radiation of sockeye salmon. However, these studies were based on low-density genomic methods that genotyped tens to thousands of loci, making it difficult to elucidate the mechanisms responsible for islands. We used whole genome resequencing to genotype millions of loci to investigate these mechanisms. We discovered 64 islands, 16 of which were shared between two isolated populations; these 16 islands were clustered in four genomic regions. Characterization of the shared regions suggested that three of four were likely created by chromosomal inversions, while the other was created by processes not involving structural variation. Additionally, all four regions were relatively small (< 600 kb), suggesting inversions and other low recombination regions do not have to span megabases to be important for adaptive divergence. In sum, our study demonstrates that heterogeneous selection can lead to a mosaic of islands created by different mechanisms within the same genome. Future studies should continue to investigate how gene flow, selection, and the architecture of genetic traits interact to influence the genomic landscape of adaptive divergence.

Peter Euclide

and 7 more

Conservation and management professionals often works across jurisdictional boundaries to identify broad ecological patterns. These collaborations help to protect populations whose distributions span political borders. One common limitation to multijurisdictional collaboration is consistency in data recording and reporting. This limitation can impact genetic research which relies on data about specific markers in an organism’s genome. Incomplete overlap of markers between separate studies can prevent direct comparisons. Standardized marker panels can reduce the impact this issue and provide a common starting place for new research. Genotyping-in-thousands (GTSeq) is one approach used to create standardized marker panels for non-model organisms. Here we describe the development, optimization, and early assessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great Lakes region of North America. High genome-coverage sequencing conducted using RAD-capture provided genotypes for thousands of single nucleotide polymorphisms (SNPs). From these markers, SNP and microhaplotype makers were chosen that were informative for genetic stock identification (GSI) and kinship analysis. The final GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling kinship identification was found to be low. Finally, genotypes could be consistently scored among separate sequencing runs >94% of the time. Results indicate that the GTSeq panel we developed should perform well for multijurisdictional research throughout the Great Lakes region.
Patagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species. Eleginops maclovinus is a protandrous hermaphrodite species with economic importance for local communities that is currently managed as a single genetic unit. In this study, we sampled five locations distributed across a salinity cline from Northern Patagonia to investigate the genetic population structure of E. maclovinus. We use Restriction-site Associated DNA (RAD) sequencing and outlier tests to obtain neutral and adaptive loci, using FST and GEA approaches. We identified a spatial pattern of structuration with gene flow and spatial selection by environmental association. Neutral and adaptive loci showed two and three genetic groups, respectively. The effective population sizes estimated ranged from 572 (Chepu) to 14,454 (Chaitén) and were influenced more by locality than salinity cline. We found loci putatively associated with salinity suggesting that salinity may act as a selective driver in E. maclovinus populations. These results suggest a complex interaction between genetic drift, geneflow, and natural selection in this area. Our findings suggest several units in this area, and the information should be integrated into the management of this species. We discuss the significance of these results for fishery management and suggest future directions to improve our understanding of how E. maclovinus is adapted to the dynamic waters of Northern Patagonia.