François Munoz

and 21 more

Although how rare species persist in communities is a major ecological question, the critical phenotypic dimension of rarity is broadly overlooked. Recent work has shown that evaluating functional distinctiveness, the average trait distance of a species to other species in a community, offers essential insights into biodiversity dynamics, ecosystem functioning, and biological conservation. However, the ecological mechanisms underlying the persistence of functionally distinct species are poorly understood. Here we propose a heterogeneous fitness landscape framework, whereby functional dimensions encompass peaks representing trait combinations that yield positive intrinsic growth rates in a community. We identify four fundamental causes leading to the persistence of functionally distinct species in a community. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (either positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and some guidelines to distinguish among them. In addition to these deterministic processes, we also explore how stochastic dispersal limitation can yield functional distinctiveness.
Context Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV blurs species differences, previous studies have found contrasting results regarding the effect of IV on species coexistence. Objective We aim at showing that the larg IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has been largely underestimated in forest plant communities. Methods and Results We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing “perfect knowledge” of individual response to the environment, to illustrate how a large observed IV can result from “imperfect knowledge” of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. Synthesis As the number of environmental dimensions that are typically quantified is generally much lower than the actual number of environmental dimensions influencing individual attributes, a great part of observed IV might be misinterpreted as random variation across individuals when in fact it is environmentally-driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.