Barbara Bomfim

and 8 more

This project aims to quantify the resiliency of prairie ecosystems in the U.S. Pacific Northwest (PNW) to climate change. Prairies in this region sustain over one million beef cows, and cow­-calf production costs are expected to increase to offset warming-induced plant productivity loss. We investigated the above- and belowground effects of experimental warming in prairie ecosystems by assessing biogeochemical controls on and patterns of asymbiotic nitrogen fixation (ANF), plant species diversity, and legume cover to address a major challenge for sustainable agriculture in the region. We hypothesize that the effect of warming on prairie functional diversity increases soil asymbiotic nitrogen inputs by decreasing legume cover and soil nitrogen availability. We quantified the effects of decadal warming stress (+2.5ºC) on soil biogeochemical properties and plant species and functional diversity during fall and spring seasons in three sites along a 520­km latitudinal gradient—from central Washington to southern Oregon—representing a drought severity gradient. At each site, we collected composite soil samples from five co-­located prairie plots under control (ambient) and warming conditions. We incubated these soils using 15N-labeled dinitrogen (15N2), and quantified total soil carbon­, total and available nitrogen, and available phosphorus and iron pools to better understand the underlying mechanisms governing warming-­induced changes in ANF. We used a point intercept technique to survey plot-level plant community composition and calculate Shannon’s diversity index and percent cover of legumes (members of Fabaceae according to the Integrated Taxonomic Information System). Warming significantly decreased plant species diversity which also decreased along the drought severity gradient. Legume cover significantly increased from 3.1% in the north to 9.2% in the south. ANF response to warming varied by season and site, where rates increased with the drought severity gradient in the fall but decreased during the spring. Total soil inorganic nitrogen availability was the strongest predictor of ANF response to warming in the spring but not in the fall. Our study highlights the importance of using soil-plant-atmosphere interactions to assess prairie ecosystem resilience to climate change in the PNW.

Barbara Bomfim

and 3 more

Background/Question/Methods This project attempts to quantify the resilience of prairie ecosystems to climate change in the Pacific Northwest (PNW). In this region, prairie ecosystems currently sustain ~1.3 million beef cows and calf production costs are expected to increase to offset drought-induced plant productivity loss. Here, we investigate patterns of asymbiotic nitrogen fixation (ANF) and biogeochemical controls, that also influence plant community composition and prairie productivity, under experimental drought to address a major challenge for sustainable agriculture in the region. We hypothesize that the effect of drought on prairie vegetation cover increases soil asymbiotic N inputs by diminishing the dominance of symbiotic root-fungal networks. To test this hypothesis, we quantified the impacts of decadal drought stress on soil ANF using 15N-labeled dinitrogen (15N2) incubations of soils from high- and low-diversity prairies across a 520-km latitudinal gradient (i.e., southern Oregon-SOR, central Oregon-COR, and central Washington-CWA) representing increasingly severe Mediterranean conditions. We also quantified total soil organic carbon-C, total, and available N, and available phosphorus-P and iron-Fe pools to better understand underlying mechanisms governing drought-induced changes in ANF. At each site, composite soil samples (n = 3) were collected from five co-located high- and low-diversity prairie plots under control (ambient) and drought (-40% precipitation) conditions. Results/Conclusions We found that soil ANF response to drought increased with the PNW Mediterranean drought intensity gradient; while ANF rates increased nearly two-fold in the southernmost site (SOR), a significant decrease in ANF was verified in the northernmost site (CWA). ANF response to drought also varied depending on plant diversity, where low-diversity prairies had a more predictable response to drought than high-diversity prairies. For instance, ANF in SOR high-diversity prairies was suppressed but no change was verified in COR high diversity prairies. Soil C and N contents were generally higher in high-diversity prairies whereas treatment had no significant effect across sites. Soil P availability, also affected by drought, and pH were the most important variables explaining ANF variability across vegetation types and sites. Based on our findings, low-diversity prairies in central WA may be those most severely impacted by increased climate change-induced drought stress. Our study highlights the importance of using soil-plant-atmosphere interactions to assess prairie ecosystem resilience to drought in the PNW.

AMANDA BENDIA

and 5 more

Active volcanoes in Antarctica, in contrast to the rest of the icy landscape, have remarkable temperature and geochemical gradients that could select for a wide variety of microbial adaptive mechanisms and metabolic pathways. Deception Island is a stratovolcano flooded by the sea, resulting in contrasting ecosystems such as permanent glaciers (<0 oC) and active fumaroles (up to 100 oC). Steep gradients in temperature, salinity and geochemistry over very short distances have been reported for Deception Island, and have been shown to effect microbial community structure and diversity. However, little is known regarding how these gradients affect ecosystem functioning, for example due to inhibition of key metabolic enzymes or pathways. In this study, we used shotgun metagenomics and metagenome-assembled genomes to explore how microbial functional diversity is shaped by extreme geochemical, salinity and temperature gradients in fumarole and glacier sediments. We observed that microbial communities from a 98 oC fumarole harbor specific hyperthermophilic molecular strategies, as well as reductive and autotrophic pathways, while those from <80 oC fumaroles possess more diverse metabolic and survival strategies capable of responding to fluctuating redox and temperature conditions. In contrast, glacier communities showed less diverse metabolic potentials, comprising mainly heterotrophic and carbon pathways. Through the reconstruction of genomes, we were able to clarify putative novel lifestyles of underrepresented taxonomic groups, especially those related to Nanoarchaeota and thermophilic ammonia-oxidizing archaeal lineages. Our results enhance understanding of the metabolic and survival capabilities of different extremophilic lineages of Bacteria and Archaea.