Ziqi Yin

and 5 more

The simulation of ice sheet-climate interaction such as surface mass balance fluxes are sensitive to model grid resolution. Here we simulate the multicentury evolution of the Greenland Ice Sheet (GrIS) and its interaction with the climate using the Community Earth System Model version 2.2 (CESM2.2) including an interactive GrIS component (the Community Ice Sheet Model v2.1 [CISM2.1]) under an idealized warming scenario (atmospheric CO2 increases by 1% yr−1 until quadrupling the pre-industrial level and then is held fixed). A variable-resolution (VR) grid with 1/4◦ regional refinement over broader Arctic and 1◦ resolution elsewhere is applied to the atmosphere and land components, and the results are compared to conventional 1◦ lat-lon grid simulations to investigate the impact of grid refinement. An acceleration of GrIS mass loss is found at around year 110, caused by rapidly increasing surface melt as the ablation area expands with associated albedo feedback and increased turbulent fluxes. Compared to the 1◦ runs, the VR run features slower melt increase, especially over Western and Northern Greenland, which slope gently towards the peripheries. This difference pattern originates primarily from the weaker albedo feedback in the VR run, complemented by its smaller cloud longwave radiation. The steeper VR Greenland surface topography favors slower ablation zone expansion, thus leading to its weaker albedo feedback. The sea level rise contribution from the GrIS in the VR run is 53 mm by year 150 and 831 mm by year 350, approximately 40% and 20% smaller than the 1◦ runs, respectively.
Canonical understanding based on general circulation models (GCMs) is that the atmospheric circulation response to midlatitude sea-surface temperature (SST) anomalies is weak compared to the larger influence of tropical SST anomalies. However, the horizontal resolution of modern GCMs, ranging from roughly 300 km to 25 km, is too coarse to fully resolve mesoscale atmospheric processes such as weather fronts. Here, we investigate the large-scale atmospheric circulation response to idealized Gulf Stream SST anomalies in Community Atmosphere Model (CAM6) simulations with 14-km regional grid refinement over the North Atlantic, and compare it to the response in simulations with 28-km regional refinement and uniform 111-km resolution. The highest resolution simulations show a large positive response of the wintertime North Atlantic Oscillation (NAO) to positive SST anomalies in the Gulf Stream, a 0.8-standard-deviation anomaly in the seasonal-mean NAO for 2°C SST anomalies. The lower-resolution simulations show a weaker response with a different spatial structure. The enhanced large-scale circulation response results from an increase in resolved vertical motions with resolution and an associated increase in the influence of SST anomalies on transient-eddy heat and momentum fluxes in the free troposphere. In response to positive SST anomalies, these processes lead to a stronger North Atlantic jet that varies less in latitude, as is characteristic of positive NAO anomalies. Our results suggest that the atmosphere responds differently to midlatitude SST anomalies in higher-resolution models and that regional refinement in key regions offers a potential pathway to improve multi-year regional climate predictions based on midlatitude SSTs.