Utilizing existing telecommunication cables for Distributed Acoustic Sensing (DAS) experiments has eased the collection of seismological data in previously difficult-to-access areas such as the ocean bottom. To assess the potential of submarine DAS for monitoring seismic activity, we conducted an experiment from mid-October to mid-December 2021 using a 45 km long dark fiber extending from the Greek island of Santorini along the ocean bottom to the neighboring island of Ios. This region is of great geophysical and public interest because of its historical and recent seismic and volcanic activity, especially along the Kolumbo volcanic chain. Besides recording anthropogenic noise and around 1000 seismic events, we observe the primary and secondary microseisms in the submarine section, the latter inducing Scholte waves in a sediment layer where the cable is well-coupled. By using the spectral element wave propagation solver Salvus, we compute synthetic strains for earthquakes with varying degrees of model complexity. Despite including topography, a water layer, and a heterogeneous velocity model, we are unable to reproduce the lack of coherence in our observed earthquake waveforms. Backpropagation simulations for four observed earthquakes indicate that clear convergence of the wavefield, and thus the ability to constrain a source region, is only possible when all model complexities are considered. We conclude that, despite the promising emergence of DAS, monitoring capabilities are limited by often unfavorable cable geometries, cable coupling, and the complexity of the medium. Interrogating multiple cables simultaneously or jointly analyzing DAS and seismometer data could help improve future monitoring experiments.

Jonas Preine

and 4 more

Lily Battershill

and 6 more

The tsunami generation potential of pyroclastic density currents (PDCs) entering the sea is poorly understood, due to limited data and observations. Thus far, tsunami generation by PDCs has been modeled in a similar manner to tsunami generation associated with landslides or debris flows, using two-layer depth-averaged approaches. Using the adaptive partial differential equation solver Basilisk and benchmarking with published laboratory experiments, this work explores some of the important parameters not yet accounted for in numerical models of PDC-generated tsunamis. We use assumptions derived from experimental literature to approximate the granular, basal flow component of a PDC as a dense Newtonian fluid flowing down an inclined plane. This modeling provides insight into how the boundary condition of the slope and the viscosity of the dense granular-fluid influence the characteristics of the waves generated. It is shown that the boundary condition of the slope has a first-order impact on the interaction dynamics between the fluidized granular flow and water, as well as the energy transfer from the flow to the generated wave. The experimental physics is captured well in the numerical model, which confirms the underlying assumption of Newtonian fluid-like behaviour in the context of wave generation. The results from this study suggest the importance of considering vertical density and velocity stratification in wave generation models. Furthermore, we demonstrate that granular-fluids more dense than water are capable of shearing the water surface and generating significant amplitude waves, despite vigorous overturning.