We present a comprehensive study of the nightside aurora phenomenon on Mars, utilizing observations from EMUS onboard EMM. The oxygen emission at 130.4 nm is by far the brightest FUV auroral emission line observed at Mars. Our statistical analysis reveals geographic, solar zenith angle, local time, and seasonal dependencies of auroral occurrence. Higher occurrence of aurora is observed in regions of open magnetic topology, where crustal magnetic fields are either very weak or both strong and vertical. Aurora occurs more frequently closer to the terminator and is more likely on the dusk side than on the dawn side of the night hemisphere. A pronounced auroral feature appears close to midnight local times in the southern hemisphere, consistent with the spot of energetic electron fluxes previously identified in the MGS data. This auroral spot is more frequent after midnight than before. Additionally, some regions on Mars are "aurora voids" where essentially no aurora occurs. Aurora exhibits a seasonal dependence, with a major enhancement near perihelion. Non-crustal field aurora additionally shows a secondary enhancement near Ls 30°. This seasonal variability is a combination of the variability in ionospheric photoelectrons and thermospheric atomic oxygen abundance. Auroral occurrence also shows an increase with the rise of Solar Cycle 25. The brightest auroral pixels are observed during space weather events such as CMEs and SIRs. These observations not only shed light on where and when Martian aurora occurs, but also add to our understanding of Mars' magnetic environment and its interaction with the heliosphere.