AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP

1116 environmental sciences Preprints

Related keywords
environmental sciences transpiration ecology soil sciences surface waters meteorology hydrology geology biological sciences hydrography information and computing sciences geography soil moisture environmental biogeochemistry atmospheric sciences development studies education data management and data science chemical oceanography climatology (global change) geophysics climate change impacts and adaptation atmospheric dynamics numerical modelling evaporation + show more keywords
groundwater human society precipitation quality of water geochemistry environmental management oceanography biological oceanography physical climatology
FOLLOW
  • Email alerts
  • RSS feed
Please note: These are preprints and have not been peer reviewed. Data may be preliminary.
The influence of small reservoirs on hydrological drought propagation in space and ti...
Paolo Colombo
Germano Gondim Ribeiro Neto

Paolo Colombo

and 4 more

November 04, 2022
To increase drought preparedness in semi-arid regions many small and medium reservoirs have been built in recent decades. Together these reservoirs form a Dense Reservoir Network (DRN) and its presence generates numerous challenges for water management. Most of the reservoirs that constitute the network are unmonitored and unregistered, posing questions on their cumulative effects on strategic reservoirs and water distribution at watershed scale. Their influence on hydrological drought propagation is thus largely unexplored. The objective of this study is then to assess the DRN effects on droughts both in time and space. This study utilized a mesoscale semi-distributed hydrological model to reproduce the DRN in a large-scale tropical semiarid watershed (19,530 km2), which presents both a network of large strategic reservoirs and a DRN. To investigate the effects in time and space generated by the network’s presence, the differences between multiple network scenarios were analyzed. Results show that the presence of the DRN accelerates the transition from meteorological to hydrological drought phases by 20% on average and slows down the recharge in strategic reservoirs by 25%, leading to a 12% increase of periods in hydrological drought conditions in a highly strategic basin and 26% without strategic reservoirs. In space, the DRN shifts upstream the basin’s water storage capacity by 8%, but when both large and small reservoirs are present the stored volume distribution behavior is not straightforward. The findings confirm the need to consider small reservoirs when addressing drought management policies at regional scale.
Hierarchical Temporal Scale Data-driven Reservoir Operation Modeling
Qianqiu Longyang
Ruijie Zeng

Qianqiu Longyang

and 1 more

November 02, 2022
As an important anthropogenic interference on the water cycle, reservoir operation behavior remains challenging to be properly represented in hydrologic models, thus limiting the capability of predicting streamflow under the interactions between hydrologic variability and operational preferences. Data-driven models provide a promising approach to represent reservoir operation rules by capturing relationships embedded in historical records. Similar to hydrologic processes vary across temporal scales, reservoir operations manifest themselves at different timescales, prioritizing different targets to mitigate streamflow variability at a given time scale. To capture interactions of reservoir operations across time scales, we proposed a hierarchical temporal scale framework to investigate the behaviors of over 300 major reservoirs across the Contiguous United States with a wide range of streamflow conditions. Machine learning models were constructed to simulate reservoir operation at daily, weekly, and monthly scales, where decisions at short-term scales interact with long-term decisions. We found that the hierarchical temporal scale configuration better captures reservoir releases than models constructed at a single time scale, especially for reservoirs with multiple operation targets. Model-based sensitivity analysis shows that for more than one third of the studied reservoirs, the release schemes, as a function of decision variables, vary at different time scales, suggesting that operators are commonly faced with complicated trade-offs to serve multiple purposes. The proposed hierarchical temporal scale approach is flexible to incorporate various data-driven models and decision variables to derive reservoir operation rule, providing a robust framework to understand the feedbacks between natural streamflow variability and human interferences across time scales.
Disentangling the Role of Forest Structure and Functional Traits for the Thermal Bala...
Adrià Barbeta Margarit
Diego G. Miralles

Adria Barbeta

and 5 more

November 02, 2022
The thermal balance of forests regulates land-atmosphere feedbacks. Forests dominated by different plant functional types have contrasting energy balances, but little is known about the influence of forest structure and functional traits. By combining spaceborne measurements of land surface temperature from ECOSTRESS with ground-based meteorological data, we estimate the thermal balance at the surface (∆Tcan-air) during four summers in a region located at the Mediterranean-temperate ecotone in the NE Iberian Peninsula. We then analyze the spatiotemporal drivers of ∆Tcan-air by quantifying the effects of meteorology, forest structure (e.g. basal area, tree height) and ecophysiology (hydraulic traits, water use efficiency), during normal days and hot spells. Canopy temperatures fluctuate according to changes in air temperature but are on average 3.2˚K warmer than the near-surface air. During hot spells, ∆Tcan-air is smaller than normal periods because the advection of hot and dry air masses from the Sahara region results in a sudden increase in air temperature relative to the canopy temperature. Vapor pressure deficit (VPD) is negatively correlated to ∆Tcan-air, since the highest VPD values coincide with peaks in heat advection. Still canopy temperatures increase with VPD due to decreased transpiration and stomatal conductance and transpiration. Meanwhile, soil water availability is shown to enhance evaporative cooling. Importantly, we demonstrate that plot-scale forest structural and hydraulic traits are key determinants for the forest thermal balance. The integration of functional traits and forest structure over relevant spatial scales could improve our ability to understand and model land-atmosphere feedbacks in forested regions.
Bridging scales: a temporal approach to evaluate global transpiration products using...
Paulo Bittencourt
Lucy Rowland

Paulo R.L. Bittencourt

and 5 more

November 01, 2022
Transpiration is a key process driving energy, water and thus carbon dynamics. Global T products are fundamental for understanding and predicting vegetation processes. However, validation of these transpiration products is limited, mainly due to lack of suitable datasets. We propose a method to use SAPFLUXNET, the first quality-controlled global tree sap flow database, for evaluating transpiration products at global scale. Our method is based on evaluating temporal mismatches, rather than absolute values, by standardizing both transpiration and sap flow products. We evaluate how transpiration responses to hydro-meteorological variation from the Global Land Evaporation Amsterdam Model (GLEAM), a widely used global transpiration product, compare to in-situ responses from SAPFLUXNET field data. Our results show GLEAM and SAPFLUXNET temporal trends are in good agreement, but diverge under extreme conditions. Their temporal mismatches differ depending on the magnitude of transpiration and are not random, but linked to energy and water availability. Despite limitations, we show that the new global SAPFLUXNET dataset is a valuable tool to evaluate T products and identify problematic assumptions and processes embedded in models. The approach we propose can, therefore, be the foundation for a wider use of SAPFLUXNET, a new, independent, source of information, to understand the mechanisms controlling global transpiration fluxes.
Impact evaluation of water infrastructure investments: Methods, challenges and demons...
Marc A Jeuland
Jennifer Orgill-Meyer

Marc A Jeuland

and 8 more

October 25, 2022
Impact evaluation (IE) of large infrastructure presents numerous challenges, and investments in urban piped water and sanitation are no exception. Here we present methods for more systematic assessment of the implications of such interventions, discussing tradeoffs between validity, relevance and practicality that arise from alternative approaches. Then, to more clearly illustrate the many issues that typically arise in such IEs, we draw on an example application in Zarqa, Jordan, where the Millennium Challenge Corporation invested about US$275 million to upgrade and extend piped water and sewer networks, as well as increase the capacity of the country’s largest wastewater treatment plant. The theory of change for the intervention took a systems view of impacts: the project aimed to improve water supply to urban areas while maintaining flows to irrigators through enhanced wastewater reuse. The case adds valuable evidence on the impacts of large infrastructure investments and illustrates well the challenges of capturing spillovers, mitigating study contamination, maintaining statistical power, and determining overall welfare effects, in situations involving diverse market and nonmarket impacts. These limitations notwithstanding, the case highlights the high value of conducting IEs, and why applied researchers should not give up on pragmatic and interdisciplinary collaborations to evaluation in the face of complex interventions.
Comparison of climate model large ensembles with observations in the Arctic using sim...
Zachary M. Labe
Elizabeth A. Barnes

Zachary M. Labe

and 1 more

June 04, 2022
Evaluating historical simulations from global climate models (GCMs) remains an important exercise for better understanding future projections of climate change and variability in rapidly warming regions, such as the Arctic. As an alternative approach for comparing climate models and observations, we set up a machine learning classification task using a shallow artificial neural network (ANN). Specifically, we train an ANN on maps of annual mean near-surface temperature in the Arctic from a multi-model large ensemble archive in order to classify which GCM produced each temperature map. After training our ANN on data from the large ensembles, we input annual mean maps of Arctic temperature from observational reanalysis and sort the prediction output according to increasing values of the ANN’s confidence for each GCM class. To attempt to understand how the ANN is classifying each temperature map with a GCM, we leverage a feature attribution method from explainable artificial intelligence. By comparing composites from the attribution method for every GCM classification, we find that the ANN is learning regional temperature patterns in the Arctic that are unique to each GCM relative to the multi-model mean ensemble. In agreement with recent studies, we show that ANNs can be useful tools for extracting regional climate signals in GCMs and observations.
A Regional Hydrological Model for Arid and Semi-Arid River Basins with Consideration...
Cong Jiang
Eric Ribeiro Parteli

Cong Jiang

and 4 more

August 25, 2022
We develop a regional hydrological model that applies to arid and semi-arid regions, by explicitly considering the effect of irrigation on the hydrological processes. A new irrigation module is here integrated into the recently introduced Atmospheric and Hydrological Modelling System (AHMS) for the quantitative assessment of basin-scale hydrological response to climate change and the impact of anthropogenic activities on water resources. The land surface, channel routing and groundwater modules of the AHMS are extended here to incorporate the new module. We then apply the model to simulating the hydrological processes in the Yellow River Basin, an arid and semi-arid region where irrigation constitutes the most important source of water use. The model is calibrated and validated using in-situ and remote sensing observations. This study demonstrates the capability of the AHMS for regional hydrological modelling in arid and semi-arid basins where irrigation profoundly influences the water balance.
The Second Century Drought in the Upper Colorado River Basin
Connie Woodhouse
Cody Routson

Connie Woodhouse

and 4 more

June 22, 2022
Evidence based on sparse tree-ring data suggests a severe sustained drought occurred in the 2nd century CE that could have rivaled medieval period droughts in the Colorado River basin (Gangopadhyay et al. 2022). Most of these tree-ring data have been used in gridded drought reconstructions (Cook et al., 2010) which extend back to 1 CE over an area that includes the intermountain western US. However, the 2nd century drought has not been highlighted in prior studies given the sparseness of the data available for this time period. A new reconstruction of Colorado River flow based on these data documents a notably severe and sustained drought over much of the 2nd century (Gangopadhyay et al. 2022). While this reconstruction suggests that the drought exceeds the severity and duration of any drought in the past 2000 years, a complete assessment of the 2nd century drought is challenging due to the sparseness of data. In this poster presentation, we describe the tree-ring data available, along with other proxy data that provide evidence for the 2nd century drought and support its severity. In our conclusions, we discuss outstanding questions and thoughts for further work.
Slow particle remineralization, rather than suppressed disaggregation, drives efficie...
Jacob Cram
Clara Fuchsman

Jacob Cram

and 13 more

December 20, 2021
Models and observations suggest that particle flux attenuation is lower across the mesopelagic zone of anoxic environments compared to oxic environments. Flux attenuation is controlled by microbial metabolism as well as aggregation and disaggregation by zooplankton, all of which also shape the relative abundance of differently sized particles. Observing and modeling particle spectra can provide information about the contributions of these processes. We measured particle size spectrum profiles at one station in the oligotrophic Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) using an underwater vision profiler (UVP), a high-resolution camera that counts and sizes particles. Measurements were taken at different times of day, over the course of a week. Comparing these data to particle flux measurements from sediment traps collected over the same time-period allowed us to constrain the particle size to flux relationship, and to generate highly resolved depth and time estimates of particle flux rates. We found that particle flux attenuated very little throughout the anoxic water column, and at some time-points appeared to increase. Comparing our observations to model predictions suggested that particles of all sizes remineralize more slowly in the ODZ than in oxic waters, and that large particles disaggregate into smaller particles, primarily between the base of the photic zone and 500 m. Acoustic measurements of multiple size classes of organisms suggested that many organisms migrated, during the day, to the region with high particle disaggregation. Our data suggest that diel-migrating organisms both actively transport biomass and disaggregate particles in the ODZ core.
Concurrent extreme events of atmospheric moisture transport and continental precipita...
Luis Gimeno-Sotelo
Luis Gimeno

Luis Gimeno-Sotelo

and 1 more

June 23, 2022
An analysis of concurrent extreme events of continental precipitation and Integrated Water Vapour Transport (IVT) is crucial to our understanding of the role of the major global mechanisms of atmospheric moisture transport, including that of the landfalling Atmospheric Rivers (ARs) in extratropical regions. For this purpose, gridded data on CPC precipitation and ERA-5 IVT at a spatial resolution of 0.5º were used to analyze these concurrent events, covering the period from Winter 1980/1981 to Autumn 2017. For each season, and for each point with more than 400 non-dry days, several copula models were fitted to model the joint distribution function of the two variables. At each of the analysed points, the best copula model was used to estimate the probability of a concurrent extreme. At the same time, within the sample of observed concurrent extremes, the proportion of days with landfalling ARs was calculated for the whole period and for two 15-year sub-periods, one earlier period and one more recent (warmer) period. Three metrics based on copulas were used to analyse carefully the influence of IVT on extreme precipitation in the main regions of occurrence of AR landfall. The results show that the probability of occurrence of concurrent extremes is strongly conditioned by the dynamic component of the IVT, the wind. The occurrence of landfalling ARs accounts for most of the concurrent extreme days of IVT and continental precipitation, with percentages of concurrent extreme days close to 90% in some seasons in almost all the known regions of maximum occurrence of landfalling ARs, and with percentages greater than 75% downwind of AR landfall regions. This coincidence was lower in tropical regions, and in monsoonal areas in particular, with percentages of less than 50%. With a few exceptions, the role of landfalling ARs as drivers of concurrent extremes of IVT and continental precipitation tends to show a decrease in recent (warmer) periods. For almost all the landfalling AR regions with high or very high probabilities of achieving a concurrent extreme, there is a general trend towards a lower influence of IVT on extreme continental precipitation in recent (warmer) periods.
Visualization of the sequestered carbon-dioxide plume in the subsurface using unsuper...
Keyla Gonzalez
Siddharth Misra

Keyla Gonzalez

and 1 more

March 16, 2022
Subsurface sequestration of carbon dioxide (CO2) requires long-term monitoring of the injected CO2 plume to prevent CO2 leakage along the wellbore or across the caprock. Accurate knowledge of the location and movement of the injected CO2 is crucial for risk management at a geological CO2-storage complex. Conventional methods for locating/assessing the injected CO2 plume in the subsurface assume a geophysical model, which is specific and may not be applicable to all types of CO2-injection reservoirs and scenarios. We developed an unsupervised-learning-based visualization of the subsurface CO2 plume that adapts and scales based on the data without requiring an assumption of the geophysical model. The data-processing workflow was applied to the cross-well tomography data from the SECARB Cranfield carbon geo-sequestration project. A multi-level clustering approach was developed to account for data imbalance due to the absence of CO2 in the large portion of the imaged reservoir. The first level of clustering differentiated CO2-bearing regions from the non-CO2 bearing regions and achieved a silhouette score of 0.85, a Calinski-Harabasz index of 160666, and a Davies-Bouldin index of 0.43, which are indicative of high quality, reliable clustering. The second level of clustering further differentiated the CO2-bearing regions into regions containing low, medium, and high CO2 content. Overall, the multi-level clustering achieved a silhouette score, Calinski-Harabasz index, and Davies-Bouldin index of 0.74, 59656, and 0.32, which confirm the high quality and reliability of the newly proposed unsupervised-learning-based visualization. Three distinct clustering techniques, namely k-means, mean-shift, and agglomerative, generated similar visualizations. In terms of the adjusted Rand index, the similarity of clusters identified by the three distinct clustering techniques is around 0.98, which indicates the robustness of the cluster labels assigned to various regions of the CO2-injection reservoir. Further, we find certain geophysical signatures, such as Fourier transform and wavelet transform, to be highly relevant and informative indicators of the spatial distribution of CO2 content.
Global sensitivity analysis using the ultra-low resolution Energy Exascale Earth Syst...
Irina Kalashnikova Tezaur
Kara Peterson

Irina Kalashnikova Tezaur

and 4 more

October 14, 2021
For decades, the Arctic has been warming at least twice as fast as the rest of the globe. As a first step towards quantifying parametric uncertainty in Arctic feedbacks, we perform a variance-based global sensitivity analysis (GSA) using a fully-coupled, ultra-low resolution (ULR) configuration of version 1 of the Department of Energy’s Energy Exascale Earth System Model (E3SMv1). The study randomly draws 139 realizations of ten model parameters spanning three E3SMv1 components (sea ice, atmosphere and ocean), which are used to generate 75 year long projections of future climate using a fixed pre-industrial forcing. We quantify the sensitivity of six Arctic-focused quantities of interest (QOIs) to these parameters using main effect, total effect and Sobol sensitivity indices computed with a Gaussian process emulator. A sensitivity index-based ranking of model parameters shows that the atmospheric parameters in the CLUBB (Cloud Layers Unified by Binormals) scheme have significant impact on sea ice status and the larger Arctic climate. We also use the Gaussian process emulator to predict the response of varying each variable when the impact of other parameters are averaged out. These results allow one to assess the non-linearity of a parameter’s impact on a QOI and investigate the presence of local minima encountered during the spin-up tuning process. Our study confirms the necessity of performing global analyses involving fully-coupled climate models, and motivates follow-on investigations in which the ULR model is compared rigorously to higher resolution configurations to confirm its viability as a lower-cost surrogate in fully-coupled climate uncertainty analyses.
Recent advances in using Chinese Earth observation satellites for remote sensing of v...
Zhengyang Zhang
Lei Lu

Zhengyang Zhang

and 6 more

April 12, 2022
Vegetation is an important component of terrestrial ecosystem as it supports other biological activities through the photosynthetic production. The biophysical and biochemical parameters of vegetation retrieved from satellite observations have been used extensively in studying the physiological states and growing conditions of vegetation that enabling global vegetation monitoring. Most of vegetation remote sensing applications using data from MODIS, Landsat, and Sentinel, though it would be beneficial, from the user perspective, to have an even more diverse data sources that not only secure data sustainability in case satellite retirement or sensor failure, but also enables research opportunities such as multi-sensor data fusion/integration and multi-angle remote sensing that can take advantage of observations acquired from different spaceborne sensors. In this regard, it would be worth to explore the potential of the large number of Chinese Earth Observation Satellites (CEOS) that have been put into orbit over past decade. Here we summarized the recent advances in applying CEOS remote sensing of vegetation and its associated applications. We focused on the uncertainty and limitations for retrieving several commonly-used vegetation parameters by critically examining the case studies conducted over different vegetation types. Suggestions for research opportunities that can benefit from the additional data from CEOS are also provided. The hope is to provide the community an overview of what could be useful to their specific ecological, environmental and global change studies by leveraging the growing data volume from the orbiting CEOS sensors.
Hourly temperature data do not support the views of the Climate Deniers: Evidence fro...
Kevin F. Forbes

Kevin F. Forbes

February 08, 2022
Survey evidence has indicated that a significant percentage of the population does not fully embrace the scientific consensus regarding climate change. This paper assesses whether the hourly temperature data support this denial. The analysis examines the relationship between hourly CO2 concentration levels and temperature using hourly data from the NOAA-operated Barrow observatory in Alaska. At this observatory, the average annual temperature over the 2015-2020 period was about 3.37 oC higher than in 1985–1990. A time-series model to explain hourly temperature is formulated using the following explanatory variables: the hourly level of total downward solar irradiance, the CO2 value lagged by one hour, proxies for the diurnal variation in temperature, proxies for the seasonal temperature variation, and proxies for possible non-anthropomorphic drivers of temperature. The purpose of the time-series approach is to capture the data’s heteroskedastic and autoregressive nature, which would otherwise “mask” CO2’s “signal” in the data. The model is estimated using hourly data from 1985 through 2015. The results are consistent with the hypothesis that increases in CO2 concentration levels have nontrivial consequences for hourly temperature. The estimated annual contributions of factors exclusive of CO2 and downward total solar irradiance are very small. The model was evaluated using out-of-sample hourly data from 1 Jan 2016 through 31 Aug 2017. The model’s out-of-sample hourly temperature predictions are highly accurate, but this accuracy is significantly degraded if the estimated CO2 effects are ignored. In short, the results are consistent with the scientific consensus on climate change.
Uncertainty analysis in multi-sector systems: Considerations for risk analysis, proje...
Vivek Srikrishnan
David C Lafferty

Vivek Srikrishnan

and 10 more

May 29, 2022
Simulation models of multi-sector systems are increasingly used to understand societal resilience to climate and economic shocks and change. However, multi-sector systems are also subject to numerous uncertainties that prevent the direct application of simulation models for prediction and planning, particularly when extrapolating past behavior to a nonstationary future. Recent studies have developed a combination of methods to characterize, attribute, and quantify these uncertainties for both single- and multi-sector systems. Here we review challenges and complications to the idealized goal of fully quantifying all uncertainties in a multi-sector model and their interactions with policy design as they emerge at different stages of analysis: (1) inference and model calibration; (2) projecting future outcomes; and (3) scenario discovery and identification of risk regimes. We also identify potential methods and research opportunities to help navigate the tradeoffs inherent in uncertainty analyses for complex systems. During this discussion, we provide a classification of uncertainty types and discuss model coupling frameworks to support interdisciplinary collaboration on multi-sector dynamics (MSD) research. Finally, we conclude with recommendations for best practices to ensure that MSD research can be properly contextualized with respect to the underlying uncertainties.
Seasonal water storage and evapotranspiration partitioning controls on the relationsh...
Zhengyu Xia
Matthew Winnick

Zhengyu Xia

and 1 more

December 03, 2021
Moisture recycling via evapotranspiration (ET) is often invoked as a mechanism for the high deuterium excess signals observed in continental precipitation (dP). However, a global-scale analysis of precipitation monitoring station isotope data shows that metrics of ET contributions to precipitation (van der Ent et al., 2014) explain little dp variability on seasonal timescales. This occurs despite the fact that ET contributions increase by ~50% in continental locations such as the Eurasian interior from wet to dry seasons. To explain this apparent paradox, we hypothesize that the effects of ET on dP are dampened during dry seasons due to contributions from isotopically-evolved residual water storage that act to lower the d-excess of ET fluxes (dET), in combination with changes in transpiration fraction (T/ET). To test this hypothesis, we develop a parsimonious two-season (wet, dry) model for dET incorporating residual water storage and ET partitioning effects. We find that in environments with limited water storage, such as shallow-rooted grasslands, dry season dET is lower than wet season dET despite lower relative humidity. As global average ratios of annual water storage to precipitation are relatively low (Guntner et al., 2007), these dynamics may be widespread over continents. In environments where water storage is not limiting, such as groundwater-dependent ecosystems, dry season dET is still likely lower; however, this effect arises instead due to higher seasonal T/ET when energy-driven plant water use is enhanced and surface evaporation is relatively limited by water availability. Together, these analyses also indicate multiple mechanisms by which dET may be lower than dp during the same season, challenging the view that moisture recycling feedback increases the dp in continental interiors. This work demonstrates the potential complexity of seasonal dp dynamics and cautions against simple interpretations of dP as a process tracer for moisture recycling. References: Guntner et al., 2007. Water Resour. Res., 43, W05416. van der Ent et al., 2014. Earth Syst. Dynam., 5, 471–489.
Carbon Flux in a Semi-Arid Mangrove Ecosystem in Magdalena Bay, B.C.S Mexico
Josediego Uribe Horta
Kyle Lunneberg

Josediego Uribe-Horta

and 6 more

January 11, 2022
Mangrove forests are among the most productive ecosystems in the world. These tropical and subtropical coastal forests provide a wide array of ecosystem services, including the ability to sequester and store large amounts of ‘blue carbon’. Given rising concerns over anthropogenic carbon dioxide (CO2) emissions, mangrove forests have been increasingly recognized for their potential in climate change mitigation programs. However, their productivity differs considerably across environments, making it difficult to estimate carbon sequestration potentials at regional scales. Additionally, most research has focused in humid and tropical latitudes, with limited studies in arid and semi-arid regions. A semi-arid mangrove forest in Magdalena Bay, Baja California Sur, Mexico was studied to quantify the average net ecosystem exchange (NEE), determine the annual carbon (C) budget and the environmental controls driving those fluxes. Measurements were taken during 2012-2013 using the eddy covariance technique, with a daily mean NEE of -2.25 +/- 0.4 g C m-2 d-1 and annual carbon uptake of 894 g C m-2 y-1. Daily variations in NEE were primarily regulated by light, but air temperature and vapor pressure deficit were strong seasonal drivers. Our research demonstrates that despite the harsh and arid climate, the mangroves of Magdalena Bay were nearly as productive as mangroves found in tropical and subtropical climates. These results broaden understanding of the ecosystem services of one of the largest mangrove ecosystems in the Baja California peninsula, and highlight the potential role of arid mangrove ecosystems for C accounting, management and mitigation plans for the region.
Water Insecurity and Climate Risk: Investment Impact of Floods and Droughts
Quintin Rayer
Karsten Haustein

Quintin Rayer

and 2 more

December 10, 2021
Concerns about water security often inform climate risk-related decisions made by environmentally focused investors (Porritt, 2001; Stern, 2006). Yet, potential liabilities for damage caused by extreme flood and drought events linked to global warming present risks that are not always reflected in share prices (Krosinsky et al., 2012). Considering the highly destructive nature of such events, we query whether companies, or specific sectors, could and should be held at least partially liable for their emission-releasing business activities. Recent articles (Rayer & Millar, 2018; Rayer et al., 2020) estimate that under a hypothetical climate liability regime, North Atlantic hurricane seasons might increasingly generate 1-2% losses on market capitalizations (or share prices) for the top seven carbon-emitting, publicly listed companies. In this paper, we extend the concept of the climate liability regime to estimate the impact of global flood- and drought-related damages on the share prices of nine fossil-fuel firms (including the seven mentioned by Rayer et al. (2020)). Following Rayer et al. (2020), we use incremental climate impacts and historical corporate emissions to estimate that climate change-related global flood and drought damages for the period of 2012 to 2016 amount to approximately 2-3% of the top nine carbon-emitting companies’ market capitalizations. We also include a discussion of moral responsibility and the proportion of obligations between producers and users. Quantifying impacts from extreme weather events increases salience and serves as an example of how science can identify and address the important business questions, pertinent to both investors and companies, that arise from a changing climate. References Krosinsky, C., Robins, N., & Viederman, S. (2012). Evolutions in sustainable investing. John Wiley & Sons. Porritt, J. (2001). The world in context. HRH The Prince of Wales’ Business and the Environment Programme, Cambridge. Rayer, Q. G., & Millar, R. J. (2018). Investing in Extreme Weather Conditions. Citywire Wealth Manager®, (429) 36. Rayer, Q., Pfleiderer, P., & Haustein, K. (2020). Global Warming and Extreme Weather Investment Risks. Palgrave Macmillan. https://doi.org/10.1007/978-3-030-38858-4_3 Stern, N. (2006). Stern Review executive summary. London.
Economically optimizing elevation of new, single-family residences for flood mitigati...
Ehab Gnan
Carol Freidland

Ehab Gnan

and 6 more

March 26, 2022
Construction with freeboard – vertical height of a structure above the minimum required – is commonly accepted as a sound investment for flood hazard mitigation. However, determining the optimal height of freeboard poses a major decision problem. This research introduces a life-cycle benefit-cost analysis (LCBCA) approach for optimizing freeboard height for a new, single-family residence, while incorporating uncertainty, and, in the case of insured homes, considering the costs from losses, insurance, and freeboard (if any) to the homeowner and National Flood Insurance Program (NFIP) separately. Using a hypothetical, case study home in Metairie, Louisiana, results show that adding 2 ft. of freeboard at the time of construction might be considered the optimal option given that it yields the highest net benefit, but the highest net benefit-cost ratio occurs for the 1 ft. freeboard. Even if flood loss reduction is not considered when adding freeboard, the savings in annual insurance premiums alone are sufficient to recover the construction costs paid by the homeowner if at least one foot of freeboard is included at construction. Collectively, these results based on conservative assumptions suggest that at the time of construction, even a small amount of freeboard provides a huge savings for the homeowner and (especially) for the financially-strapped NFIP. For community planners, the results suggest that wise planning with reasonable expectations on the front end makes for a more sustainable community.
Remote Sensing of Land Change: A Multifaceted Perspective
Zhe Zhu
Shi Qiu

Zhe Zhu

and 2 more

October 06, 2022
The discipline of land change science has been evolving rapidly in the past decades. Remote sensing played a major role in one of the essential components of land change science, which includes observation, monitoring, and characterization of land change. In this paper, we proposed a new framework of the multifaceted view of land change through the lens of remote sensing and recommended five facets of land change including change location, time, target, metric, and agent. We also evaluated the impacts of spatial, spectral, temporal, angular, and data-integration domains of the remotely sensed data on observing, monitoring, and characterization of different facets of land change, as well as discussed some of the current land change products. We recommend clarifying the specific land change facet being studied in remote sensing of land change, reporting multiple or all facets of land change in remote sensing products, shifting the focus from land cover change to specific change metric and agent, integrating social science data and multi-sensor datasets for a deeper and fuller understanding of land change, and recognizing limitations and weaknesses of remote sensing in land change studies.
The role of the North Atlantic Oscillation for projections of winter mean precipitati...
Christine M. McKenna
Amanda Maycock

Christine M. McKenna

and 1 more

September 08, 2022
Climate models generally project an increase in the winter North Atlantic Oscillation (NAO) index under a future high-emissions scenario, alongside an increase in winter precipitation in northern Europe and a decrease in southern Europe. The extent to which future forced NAO trends are important for European winter precipitation trends and their uncertainty remains unclear. We show using the Multimodel Large Ensemble Archive that the NAO plays a small role in northern European mean winter precipitation projections for 2080-2099. Conversely, half of the model uncertainty in southern European mean winter precipitation projections is potentially reducible through improved understanding of the NAO projections. Extreme positive NAO winters increase in frequency in most models as a consequence of mean NAO changes. These extremes also have more severe future precipitation impacts, largely because of mean precipitation changes. This has implications for future resilience to extreme positive NAO winters, which frequently have severe societal impacts.
Pyleoclim: Paleoclimate Timeseries Analysis and Visualization with Python
Deborah Khider
Julien Emile-Geay

Deborah Khider

and 6 more

September 19, 2022
We present a Python package geared towards the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim. The code is open-source, object-oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code’s philosophy, structure and base functionalities, and apply it to three paleoclimate problems: (1) orbital-scale climate variability in a deep-sea core, illustrating spectral, wavelet and coherency analysis in the presence of age uncertainties; (2) correlating a high-resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (3) model-data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting FAIR software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud-executable Jupyter notebooks, to encourage adoption by new users.
Quantifying Impact of Anthropogenic Disturbances on Water Availability and Water Stre...
Tadanobu Nakayama
Qinxue Wang

Tadanobu Nakayama

and 2 more

October 15, 2021
In Mongolia, overuse and degradation of groundwater is a serious issue, mainly in the urban and economic hub, Ulaanbaatar, and the Southern Gobi mining hub. In order to explicitly quantify spatio-temporal variations in water availability, a process-based eco-hydrology model, NICE (National Integrated Catchment-based Eco-hydrology) (Nakayama and Watanabe, 2004), was applied to two contrasting river basins including these hubs. The authors built a high-resolution grid data representing water use for livestock, urban populations, and mining by combining a global dataset, statistical data, GIS data, observation data, and field surveys. The model simulated the effects of climatic change and human-induced disturbances on water resources during 1980-2018 (Nakayama et al., 2021). Although drinking by herders’ livestock had some impact on the hydrologic change, the groundwater level in the Tuul River was shown to have been extremely degraded by water use in Ulaanbaatar over the last few decades whereas that in the Galba River has declined markedly as a result of Oyu Tolgoi mining since 2010. Analysis of the relative contribution of environmental factors also helped us to separate the effects of climatic change and human activities on spatio-temporal change in the groundwater level. Further, they extended NICE to couple with inverse method for sensitivity analysis and parameter estimation of anthropogenic water uses (NICE-INVERSE). This new model quantified the spatio-temporal variations of livestock water use in these river basins (Nakayama, et al., in press). The livestock water use was generally small for each soum (district), and could also be heavily returned back to the ecosystems. The result also showed a temporal decreasing trend of unit water use in some typical livestock (cattle, sheep, and goats), suggesting a substantial increase in water stress due to local-regional eco-hydrological degradation by urbanization and mining. Sensitivity analysis and inverse estimation of model parameters helped to improve the accuracy of hydrologic budgets in basins. This methodology is powerful for evaluating spatio-temporal variations of water availability and supporting water management in regions with fewer inventory data.
Upskilling low-fidelity hydrodynamic models of flood inundation through spatial analy...
Niels Fraehr
Quan J. Wang

Niels Fraehr

and 3 more

July 17, 2022
Accurate flood inundation modelling using a complex high-resolution hydrodynamic (high-fidelity) model can be very computationally demanding. To address this issue, efficient approximation methods (surrogate models) have been developed. Despite recent developments, there remain significant challenges in using surrogate methods for modelling the dynamical behaviour of flood inundation in an efficient manner. Most methods focus on estimating the maximum flood extent due to the high spatial-temporal dimensionality of the data. This study presents a hybrid surrogate model, consisting of a low-resolution hydrodynamic (low-fidelity) and a Sparse Gaussian Process (Sparse GP) model, to capture the dynamic evolution of the flood extent. The low-fidelity model is computationally efficient but has reduced accuracy compared to a high-fidelity model. To account for the reduced accuracy, a Sparse GP model is used to correct the low-fidelity modelling results. To address the challenges posed by the high dimensionality of the data from the low- and high-fidelity models, Empirical Orthogonal Functions (EOF) analysis is applied to reduce the spatial-temporal data into a few key features. This enables training of the Sparse GP model to predict high-fidelity flood data from low-fidelity flood data, so that the hybrid surrogate model can accurately simulate the dynamic flood extent without using a high-fidelity model. The hybrid surrogate model is validated on the flat and complex Chowilla floodplain in Australia. The hybrid model was found to improve the results significantly compared to just using the low-fidelity model and incurred only 39% of the computational cost of a high-fidelity model.
← Previous 1 2 3 4 5 6 7 8 9 … 46 47 Next →
Back to search
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy