References
ABARCA, M. & SPAHN, R. 2021. Direct and indirect effects of altered
temperature regimes and phenological mismatches on insect populations.
Current Opinion in Insect Science, 47, 67-74.
BANNERMAN, J. A. & ROITBERG, B. D. 2014. Impact of extreme and
fluctuating temperatures on aphid–parasitoid dynamics. Oikos, 123,
89-98.
BROWN, J. J., PASCUAL, M., WIMBERLY, M. C., JOHNSON, L. R. & MURDOCK,
C. C. 2023. Humidity–The overlooked variable in the thermal biology of
mosquito‐borne disease. Ecology Letters.
CAVIGLIASSO, F., GATTI, J.-L., COLINET, D. & POIRIÉ, M. 2021. Impact of
temperature on the immune interaction between a parasitoid wasp and
Drosophila host species. Insects, 12, 647.
CHOWN, S. L., SØRENSEN, J. G. & TERBLANCHE, J. S. 2011. Water loss in
insects: an environmental change perspective. Journal of insect
physiology, 57, 1070-1084.
COPE, O. L., ZEHR, L. N., AGRAWAL, A. A. & WETZEL, W. C. 2023. The
timing of heat waves has multiyear effects on milkweed and its insect
community. Ecology, 104, e3988.
DUALE, A. 2005. Effect of temperature and relative humidity on the
biology of the stem borer parasitoid Pediobius furvus
(Gahan)(Hymenoptera: Eulophidae) for the management of stem borers.
Environmental Entomology, 34, 1-5.
FURLONG, M. J. & ZALUCKI, M. P. 2017. Climate change and biological
control: the consequences of increasing temperatures on host–parasitoid
interactions. Current opinion in insect science, 20, 39-44.
GERSHUNOV, A. & GUIRGUIS, K. 2012. California heat waves in the present
and future. Geophysical Research Letters, 39.
GILLESPIE, D. R., NASREEN, A., MOFFAT, C. E., CLARKE, P. & ROITBERG, B.
D. 2012. Effects of simulated heat waves on an experimental community of
pepper plants, green peach aphids and two parasitoid species. Oikos,
121, 149-159.
GONZÁLEZ‐TOKMAN, D., CÓRDOBA‐AGUILAR, A., DÁTTILO, W., LIRA‐NORIEGA, A.,
SÁNCHEZ‐GUILLÉN, R. A. & VILLALOBOS, F. 2020. Insect responses to heat:
physiological mechanisms, evolution and ecological implications in a
warming world. Biological Reviews, 95, 802-821.
GROSS, H. 1988. Effect of temperature, relative humidity, and free water
on the number and normalcy of Trichogramma pretiosum Riley (Hymenoptera:
Trichogrammatidae) emerging from eggs of Heliothis zea
(Boddie)(Lepidoptera: Noctuidae). Environmental Entomology, 17, 470-475.
HANCE, T., VAN BAAREN, J., VERNON, P. & BOIVIN, G. 2007. Impact of
extreme temperatures on parasitoids in a climate change perspective.
Annu. Rev. Entomol., 52, 107-126.
HARTIG, F. & HARTIG, M. F. 2017. Package ‘DHARMa’. R package.
HARVEY, J. A. 1996. Venturia canescens parasitizing Galleria mellonella
and Anagasta kuehniella: is the parasitoid a conformer or regulator?
Journal of Insect Physiology, 42, 1017-1025.
HARVEY, J. A., HARVEY, I. F. & THOMPSON, D. J. 1994. Flexible larval
growth allows use of a range of host sizes by a parasitoid wasp.
Ecology, 75, 1420-1428.
HARVEY, J. A., HARVEY, I. F. & THOMPSON, D. J. 2001. Lifetime
reproductive success in the solitary endoparasitoid, Venturia canescens.
Journal of Insect Behavior, 14, 573-593.
HARVEY, J. A. & STRAND, M. R. 2002. The developmental strategies of
endoparasitoid wasps vary with host feeding ecology. Ecology, 83,
2439-2451.
HARVEY, J. A. & VET, L. E. 1997. Venturia canescens parasitizing
Galleria mellonella and Anagasta kuehniella: differing suitability of
two hosts with highly variable growth potential. Entomologia
experimentalis et applicata, 84, 93-100.
HEINRICH, E. & BRADLEY, T. 2014. Temperature-dependent variation in gas
exchange patterns and spiracular control in Rhodnius prolixus. Journal
of Experimental Biology, 217, 2752-2760.
JEFFS, C. T. & LEWIS, O. T. 2013. Effects of climate warming on
host–parasitoid interactions. Ecological Entomology, 38, 209-218.
JOHNSON, J. 2010. Effect of relative humidity and product moisture on
response of diapausing and nondiapausing Indianmeal moth (Lepidoptera:
Pyralidae) larvae to low pressure treatments. Journal of Economic
Entomology, 103, 612-618.
JONES, T. S., BILTON, A. R., MAK, L. & SAIT, S. M. 2015. Host switching
in a generalist parasitoid: contrasting transient and transgenerational
costs associated with novel and original host species. Ecology and
Evolution, 5, 459-465.
KWAK, C. & CLAYTON-MATTHEWS, A. 2002. Multinomial logistic regression.
Nursing research, 51, 404-410.
LEFCHECK, J. S. 2016. piecewiseSEM: Piecewise structural equation
modelling in r for ecology, evolution, and systematics. Methods in
Ecology and Evolution, 7, 573-579.
LI, M., GUO, R., DING, W. & MA, J. 2022. Temperature dependent
developmental time for the larva stage of Aedes aegypti. Mathematical
Biosciences and Engineering, 19, 4396-4406.
LI, Z., HE, L., ZHANG, H., URRUTIA‐CORDERO, P., EKVALL, M. K.,
HOLLANDER, J. & HANSSON, L. A. 2017. Climate warming and heat waves
affect reproductive strategies and interactions between submerged
macrophytes. Global change biology, 23, 108-116.
MA, C.-S., MA, G. & PINCEBOURDE, S. 2021. Survive a warming climate:
insect responses to extreme high temperatures. Annual Review of
Entomology, 66, 163-184.
MAINALI, B. P. & LIM, U. T. 2013. Quality assessment of Riptortus
pedestris (Hemiptera: Alydidae) eggs cold-stored at different
temperature and relative humidity regime. Biological Control, 64,
132-137.
MEISNER, M. H., HARMON, J. P. & IVES, A. R. 2014. Temperature effects
on long‐term population dynamics in a parasitoid–host system.
Ecological Monographs, 84, 457-476.
MOORE, M. E., HILL, C. A. & KINGSOLVER, J. G. 2021. Differing thermal
sensitivities in a host–parasitoid interaction: High, fluctuating
developmental temperatures produce dead wasps and giant caterpillars.
Functional Ecology, 35, 675-685.
MOORE, M. E., HILL, C. A. & KINGSOLVER, J. G. 2022. Developmental
timing of extreme temperature events (heat waves) disrupts
host–parasitoid interactions. Ecology and Evolution, 12, e8618.
MUGABO, M., GILLJAM, D., PETTEWAY, L., YUAN, C., FOWLER, M. S. & SAIT,
S. M. 2019. Environmental degradation amplifies species’ responses to
temperature variation in a trophic interaction. Journal of Animal
Ecology, 88, 1657-1669.
NGUYEN, T. M., BRESSAC, C. & CHEVRIER, C. 2013. Heat stress affects
male reproduction in a parasitoid wasp. Journal of insect Physiology,
59, 248-254.
OLADIPUPO, S. O., WILSON, A. E., HU, X. P. & APPEL, A. G. 2022. Why do
insects close their spiracles? a meta-analytic evaluation of the
adaptive hypothesis of discontinuous gas exchange in insects. Insects,
13, 117.
RAHMSTORF, S. & COUMOU, D. 2011. Increase of extreme events in a
warming world. Proceedings of the National Academy of Sciences, 108,
17905-17909.
RCORETEAM 2022. R: A language and environment for statistical computing.
. R Foundation for Statistical Computing, Vienna, Austria.
RIPLEY, B., VENABLES, W. & RIPLEY, M. B. 2016. Package ‘nnet’. R
package version, 7, 700.
ROGERS, D. 1972. The ichneumon wasp Venturia canescens: oviposition and
avoidance of superparasitism. Entomologia experimentalis et applicata,
15, 190-194.
ROZEN‐RECHELS, D., DUPOUÉ, A., LOURDAIS, O., CHAMAILLÉ‐JAMMES, S.,
MEYLAN, S., CLOBERT, J. & LE GALLIARD, J. F. 2019. When water interacts
with temperature: Ecological and evolutionary implications of
thermo‐hydroregulation in terrestrial ectotherms. Ecology and evolution,
9, 10029-10043.
RUSSO, S., SILLMANN, J. & STERL, A. 2017. Humid heat waves at different
warming levels. Scientific reports, 7, 7477.
RUTHROF, K. X., BRESHEARS, D. D., FONTAINE, J. B., FROEND, R. H.,
MATUSICK, G., KALA, J., MILLER, B. P., MITCHELL, P. J., WILSON, S. K. &
VAN KEULEN, M. 2018. Subcontinental heat wave triggers terrestrial and
marine, multi-taxa responses. Scientific Reports, 8, 13094.
SALIN, C., VERNON, P. & VANNIER, G. 1999. Effects of temperature and
humidity on transpiration in adults of the lesser mealworm, Alphitobius
diaperinus (Coleoptera: Tenebrionidae). Journal of insect physiology,
45, 907-914.
SCHÄR, C. 2016. The worst heat waves to come. Nature Climate Change, 6,
128-129.
SCHIMPF, N. G., MATTHEWS, P. G., WILSON, R. S. & WHITE, C. R. 2009.
Cockroaches breathe discontinuously to reduce respiratory water loss.
Journal of Experimental Biology, 212, 2773-2780.
SEYMOUR, J. E. & JONES, R. E. 2000. Humidity‐terminated diapause in the
tropical braconid parasitoid Microplitis demolitor. Ecological
Entomology, 25, 481-485.
SHIPLEY, B. 2000. A new inferential test for path models based on
directed acyclic graphs. Structural Equation Modeling, 7, 206-218.
SHIPP, J., GRACE, B. & JANZEN, H. 1988. Influence of temperature and
water vapour pressure on the flight activity of Simulium arcticum
Malloch (Diptera: Simuliidae). International journal of biometeorology,
32, 242-246.
SIMAZ, O. & SZŰCS, M. 2021. Heat waves affect an invasive herbivore and
its parasitoid differentially with impacts beyond the first generation.
Ecosphere, 12, e03796.
SIMMONS, L. W., LOVEGROVE, M., DU, X., REN, Y. & THOMAS, M. L. 2023.
Humidity stress and its consequences for male pre‐and post‐copulatory
fitness traits in an insect. Ecology and evolution, 13, e10244.
SKENDŽIĆ, S., ZOVKO, M., ŽIVKOVIĆ, I. P., LEŠIĆ, V. & LEMIĆ, D. 2021.
The impact of climate change on agricultural insect pests. Insects, 12,
440.
SOLOMON, M. 1951. Control of humidity with potassium hydroxide,
sulphuric acid, or other solutions. Bulletin of entomological Research,
42, 543-554.
STIREMAN, J. O., DYER, L. A., JANZEN, D. H., SINGER, M., LILL, J.,
MARQUIS, R. J., RICKLEFS, R. E., GENTRY, G., HALLWACHS, W. & COLEY, P.
D. 2005. Climatic unpredictability and parasitism of caterpillars:
implications of global warming. Proceedings of the National Academy of
Sciences, 102, 17384-17387.
SUN, Q., MIAO, C., HANEL, M., BORTHWICK, A. G., DUAN, Q., JI, D. & LI,
H. 2019. Global heat stress on health, wildfires, and agricultural crops
under different levels of climate warming. Environment international,
128, 125-136.
VALLS, A., KRAL-O’BRIEN, K., KOPCO, J. & HARMON, J. P. 2020. Timing
alters how a heat shock affects a host-parasitoid interaction. Journal
of Thermal Biology, 90, 102596.
WANG, P., YANG, Y., TANG, J., LEUNG, L. R. & LIAO, H. 2021. Intensified
humid heat events under global warming. Geophysical Research Letters,
48, e2020GL091462.
WENDA, C., GAITÁN‐ESPITIA, J. D., SOLANO‐IGUARAN, J. J., NAKAMURA, A.,
MAJCHER, B. M. & ASHTON, L. A. 2023. Heat tolerance variation reveals
vulnerability of tropical herbivore–parasitoid interactions to climate
change. Ecology Letters, 26, 278-290.
WETHERINGTON, M. T., JENNINGS, D. E., SHREWSBURY, P. M. & DUAN, J. J.
2017. Climate variation alters the synchrony of host–parasitoid
interactions. Ecology and evolution, 7, 8578-8587.
WICKHAM, H., AVERICK, M., BRYAN, J., CHANG, W., MCGOWAN, L. D. A.,
FRANÇOIS, R., GROLEMUND, G., HAYES, A., HENRY, L. & HESTER, J. 2019.
Welcome to the Tidyverse. Journal of open source software, 4, 1686.
YU, X.-L., LI, J.-Y., ZHOU, Y.-T., PENG, J. & QIU, B.-L. 2022.
Simulated extreme high temperatures alter the demographic parameters of
Aphelinus asychis and diminish parasitoid fitness. Biological Control,
174, 105028.
ZHANG, Y.-B., ZHANG, G.-F., LIU, W.-X. & WAN, F.-H. 2019. Continuous
heat waves change the life history of a host-feeding parasitoid.
Biological Control, 135, 57-65.
Table 1 The parameter estimates of the multinomial logit
regression model on the relative success of parasitoids, hosts, and none
in parasitized hosts. Reference level = parasitoid emergence.
Significant differences (p < 0.05) were denoted with
bold.