References
ABARCA, M. & SPAHN, R. 2021. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Current Opinion in Insect Science, 47, 67-74.
BANNERMAN, J. A. & ROITBERG, B. D. 2014. Impact of extreme and fluctuating temperatures on aphid–parasitoid dynamics. Oikos, 123, 89-98.
BROWN, J. J., PASCUAL, M., WIMBERLY, M. C., JOHNSON, L. R. & MURDOCK, C. C. 2023. Humidity–The overlooked variable in the thermal biology of mosquito‐borne disease. Ecology Letters.
CAVIGLIASSO, F., GATTI, J.-L., COLINET, D. & POIRIÉ, M. 2021. Impact of temperature on the immune interaction between a parasitoid wasp and Drosophila host species. Insects, 12, 647.
CHOWN, S. L., SØRENSEN, J. G. & TERBLANCHE, J. S. 2011. Water loss in insects: an environmental change perspective. Journal of insect physiology, 57, 1070-1084.
COPE, O. L., ZEHR, L. N., AGRAWAL, A. A. & WETZEL, W. C. 2023. The timing of heat waves has multiyear effects on milkweed and its insect community. Ecology, 104, e3988.
DUALE, A. 2005. Effect of temperature and relative humidity on the biology of the stem borer parasitoid Pediobius furvus (Gahan)(Hymenoptera: Eulophidae) for the management of stem borers. Environmental Entomology, 34, 1-5.
FURLONG, M. J. & ZALUCKI, M. P. 2017. Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current opinion in insect science, 20, 39-44.
GERSHUNOV, A. & GUIRGUIS, K. 2012. California heat waves in the present and future. Geophysical Research Letters, 39.
GILLESPIE, D. R., NASREEN, A., MOFFAT, C. E., CLARKE, P. & ROITBERG, B. D. 2012. Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos, 121, 149-159.
GONZÁLEZ‐TOKMAN, D., CÓRDOBA‐AGUILAR, A., DÁTTILO, W., LIRA‐NORIEGA, A., SÁNCHEZ‐GUILLÉN, R. A. & VILLALOBOS, F. 2020. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95, 802-821.
GROSS, H. 1988. Effect of temperature, relative humidity, and free water on the number and normalcy of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) emerging from eggs of Heliothis zea (Boddie)(Lepidoptera: Noctuidae). Environmental Entomology, 17, 470-475.
HANCE, T., VAN BAAREN, J., VERNON, P. & BOIVIN, G. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol., 52, 107-126.
HARTIG, F. & HARTIG, M. F. 2017. Package ‘DHARMa’. R package.
HARVEY, J. A. 1996. Venturia canescens parasitizing Galleria mellonella and Anagasta kuehniella: is the parasitoid a conformer or regulator? Journal of Insect Physiology, 42, 1017-1025.
HARVEY, J. A., HARVEY, I. F. & THOMPSON, D. J. 1994. Flexible larval growth allows use of a range of host sizes by a parasitoid wasp. Ecology, 75, 1420-1428.
HARVEY, J. A., HARVEY, I. F. & THOMPSON, D. J. 2001. Lifetime reproductive success in the solitary endoparasitoid, Venturia canescens. Journal of Insect Behavior, 14, 573-593.
HARVEY, J. A. & STRAND, M. R. 2002. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology, 83, 2439-2451.
HARVEY, J. A. & VET, L. E. 1997. Venturia canescens parasitizing Galleria mellonella and Anagasta kuehniella: differing suitability of two hosts with highly variable growth potential. Entomologia experimentalis et applicata, 84, 93-100.
HEINRICH, E. & BRADLEY, T. 2014. Temperature-dependent variation in gas exchange patterns and spiracular control in Rhodnius prolixus. Journal of Experimental Biology, 217, 2752-2760.
JEFFS, C. T. & LEWIS, O. T. 2013. Effects of climate warming on host–parasitoid interactions. Ecological Entomology, 38, 209-218.
JOHNSON, J. 2010. Effect of relative humidity and product moisture on response of diapausing and nondiapausing Indianmeal moth (Lepidoptera: Pyralidae) larvae to low pressure treatments. Journal of Economic Entomology, 103, 612-618.
JONES, T. S., BILTON, A. R., MAK, L. & SAIT, S. M. 2015. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species. Ecology and Evolution, 5, 459-465.
KWAK, C. & CLAYTON-MATTHEWS, A. 2002. Multinomial logistic regression. Nursing research, 51, 404-410.
LEFCHECK, J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579.
LI, M., GUO, R., DING, W. & MA, J. 2022. Temperature dependent developmental time for the larva stage of Aedes aegypti. Mathematical Biosciences and Engineering, 19, 4396-4406.
LI, Z., HE, L., ZHANG, H., URRUTIA‐CORDERO, P., EKVALL, M. K., HOLLANDER, J. & HANSSON, L. A. 2017. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Global change biology, 23, 108-116.
MA, C.-S., MA, G. & PINCEBOURDE, S. 2021. Survive a warming climate: insect responses to extreme high temperatures. Annual Review of Entomology, 66, 163-184.
MAINALI, B. P. & LIM, U. T. 2013. Quality assessment of Riptortus pedestris (Hemiptera: Alydidae) eggs cold-stored at different temperature and relative humidity regime. Biological Control, 64, 132-137.
MEISNER, M. H., HARMON, J. P. & IVES, A. R. 2014. Temperature effects on long‐term population dynamics in a parasitoid–host system. Ecological Monographs, 84, 457-476.
MOORE, M. E., HILL, C. A. & KINGSOLVER, J. G. 2021. Differing thermal sensitivities in a host–parasitoid interaction: High, fluctuating developmental temperatures produce dead wasps and giant caterpillars. Functional Ecology, 35, 675-685.
MOORE, M. E., HILL, C. A. & KINGSOLVER, J. G. 2022. Developmental timing of extreme temperature events (heat waves) disrupts host–parasitoid interactions. Ecology and Evolution, 12, e8618.
MUGABO, M., GILLJAM, D., PETTEWAY, L., YUAN, C., FOWLER, M. S. & SAIT, S. M. 2019. Environmental degradation amplifies species’ responses to temperature variation in a trophic interaction. Journal of Animal Ecology, 88, 1657-1669.
NGUYEN, T. M., BRESSAC, C. & CHEVRIER, C. 2013. Heat stress affects male reproduction in a parasitoid wasp. Journal of insect Physiology, 59, 248-254.
OLADIPUPO, S. O., WILSON, A. E., HU, X. P. & APPEL, A. G. 2022. Why do insects close their spiracles? a meta-analytic evaluation of the adaptive hypothesis of discontinuous gas exchange in insects. Insects, 13, 117.
RAHMSTORF, S. & COUMOU, D. 2011. Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences, 108, 17905-17909.
RCORETEAM 2022. R: A language and environment for statistical computing. . R Foundation for Statistical Computing, Vienna, Austria.
RIPLEY, B., VENABLES, W. & RIPLEY, M. B. 2016. Package ‘nnet’. R package version, 7, 700.
ROGERS, D. 1972. The ichneumon wasp Venturia canescens: oviposition and avoidance of superparasitism. Entomologia experimentalis et applicata, 15, 190-194.
ROZEN‐RECHELS, D., DUPOUÉ, A., LOURDAIS, O., CHAMAILLÉ‐JAMMES, S., MEYLAN, S., CLOBERT, J. & LE GALLIARD, J. F. 2019. When water interacts with temperature: Ecological and evolutionary implications of thermo‐hydroregulation in terrestrial ectotherms. Ecology and evolution, 9, 10029-10043.
RUSSO, S., SILLMANN, J. & STERL, A. 2017. Humid heat waves at different warming levels. Scientific reports, 7, 7477.
RUTHROF, K. X., BRESHEARS, D. D., FONTAINE, J. B., FROEND, R. H., MATUSICK, G., KALA, J., MILLER, B. P., MITCHELL, P. J., WILSON, S. K. & VAN KEULEN, M. 2018. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Scientific Reports, 8, 13094.
SALIN, C., VERNON, P. & VANNIER, G. 1999. Effects of temperature and humidity on transpiration in adults of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Journal of insect physiology, 45, 907-914.
SCHÄR, C. 2016. The worst heat waves to come. Nature Climate Change, 6, 128-129.
SCHIMPF, N. G., MATTHEWS, P. G., WILSON, R. S. & WHITE, C. R. 2009. Cockroaches breathe discontinuously to reduce respiratory water loss. Journal of Experimental Biology, 212, 2773-2780.
SEYMOUR, J. E. & JONES, R. E. 2000. Humidity‐terminated diapause in the tropical braconid parasitoid Microplitis demolitor. Ecological Entomology, 25, 481-485.
SHIPLEY, B. 2000. A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling, 7, 206-218.
SHIPP, J., GRACE, B. & JANZEN, H. 1988. Influence of temperature and water vapour pressure on the flight activity of Simulium arcticum Malloch (Diptera: Simuliidae). International journal of biometeorology, 32, 242-246.
SIMAZ, O. & SZŰCS, M. 2021. Heat waves affect an invasive herbivore and its parasitoid differentially with impacts beyond the first generation. Ecosphere, 12, e03796.
SIMMONS, L. W., LOVEGROVE, M., DU, X., REN, Y. & THOMAS, M. L. 2023. Humidity stress and its consequences for male pre‐and post‐copulatory fitness traits in an insect. Ecology and evolution, 13, e10244.
SKENDŽIĆ, S., ZOVKO, M., ŽIVKOVIĆ, I. P., LEŠIĆ, V. & LEMIĆ, D. 2021. The impact of climate change on agricultural insect pests. Insects, 12, 440.
SOLOMON, M. 1951. Control of humidity with potassium hydroxide, sulphuric acid, or other solutions. Bulletin of entomological Research, 42, 543-554.
STIREMAN, J. O., DYER, L. A., JANZEN, D. H., SINGER, M., LILL, J., MARQUIS, R. J., RICKLEFS, R. E., GENTRY, G., HALLWACHS, W. & COLEY, P. D. 2005. Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proceedings of the National Academy of Sciences, 102, 17384-17387.
SUN, Q., MIAO, C., HANEL, M., BORTHWICK, A. G., DUAN, Q., JI, D. & LI, H. 2019. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment international, 128, 125-136.
VALLS, A., KRAL-O’BRIEN, K., KOPCO, J. & HARMON, J. P. 2020. Timing alters how a heat shock affects a host-parasitoid interaction. Journal of Thermal Biology, 90, 102596.
WANG, P., YANG, Y., TANG, J., LEUNG, L. R. & LIAO, H. 2021. Intensified humid heat events under global warming. Geophysical Research Letters, 48, e2020GL091462.
WENDA, C., GAITÁN‐ESPITIA, J. D., SOLANO‐IGUARAN, J. J., NAKAMURA, A., MAJCHER, B. M. & ASHTON, L. A. 2023. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecology Letters, 26, 278-290.
WETHERINGTON, M. T., JENNINGS, D. E., SHREWSBURY, P. M. & DUAN, J. J. 2017. Climate variation alters the synchrony of host–parasitoid interactions. Ecology and evolution, 7, 8578-8587.
WICKHAM, H., AVERICK, M., BRYAN, J., CHANG, W., MCGOWAN, L. D. A., FRANÇOIS, R., GROLEMUND, G., HAYES, A., HENRY, L. & HESTER, J. 2019. Welcome to the Tidyverse. Journal of open source software, 4, 1686.
YU, X.-L., LI, J.-Y., ZHOU, Y.-T., PENG, J. & QIU, B.-L. 2022. Simulated extreme high temperatures alter the demographic parameters of Aphelinus asychis and diminish parasitoid fitness. Biological Control, 174, 105028.
ZHANG, Y.-B., ZHANG, G.-F., LIU, W.-X. & WAN, F.-H. 2019. Continuous heat waves change the life history of a host-feeding parasitoid. Biological Control, 135, 57-65.
Table 1 The parameter estimates of the multinomial logit regression model on the relative success of parasitoids, hosts, and none in parasitized hosts. Reference level = parasitoid emergence. Significant differences (p < 0.05) were denoted with bold.