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Abstract

We are considered with the following nonlinear Schrödinger equation

−∆u+ (λa(x) + 1)u = f(u), x ∈ V,

on a locally finite graph G = (V,E), where V denotes the vertex set, E
denotes the edge set, λ > 1 is a parameter, f(s) is asymptotically linear with
respect to s at infinity, and the potential a : V → [0,+∞) has a nonempty
well Ω. By using variational methods we prove that the above problem
has a ground state solution uλ for any λ > 1. Moreover, we show that as
λ → ∞, the ground state solution uλ converges to a ground state solution of
a Dirichlet problem defined on the potential well Ω.
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1. Introduction

In this paper, we consider the following asymptotically linear Schrödinger
equation

−∆u+ (λa(x) + 1)u = f(u), x ∈ V, (1.1)

∗Corresponding author
Email addresses: yxli@whut.edu.cn (Yunxue Li), zpwang@whut.edu.cn (Zhengping

Wang )

Preprint submitted to Nuclear Physics B January 11, 2024



on a connected locally finite graph G = (V,E), where V denotes the vertex
set, E denotes the edge set, and λ > 1 is a parameter. We call G a locally
finite graph if for any x ∈ V , there are only finite y ∈ V such that xy ∈ E.
A graph is connected if any two vertices x and y can be connected via finite
edges. For any edge xy ∈ E, we assume that the weight ωxy satisfies ωxy =
ωyx > 0. The measure µ : V → R+ is a finite positive function. For any
function u : V → R, the graph Laplacian of u is defined as

∆u(x) :=
1

µ(x)

∑
y∼x

ωxy(u(y)− u(x)), (1.2)

where y ∼ x stands for any vertex y connected with x by an edge xy ∈ E.
In the past decade, the study of partial differential equations on graphs,

which has a wide range of applications in image processing, data analysis
and neural networks, has been receiving great attention, see [1, 2, 3] for
more practical backgrounds. Recently, there are some mathematical works
on geometric inequalities on graphs [4, 5], and the heat equation on graphs [6,
7, 8, 9, 10]. In the case of elliptic differential equations on graphs, Grigor’yan
et al. [11, 12, 13] obtained the existence results by using variational methods.
Specially in [13], Grigor’yan, Lin and Yang proved the existence of strictly
positive solutions for (1.1) when the nonlinearity f satisfies the so-called
Ambrosetti-Rabinowitz ((AR) for short) condition:
(AR): there exists a constant θ > 2 such that for all x ∈ V and s > 0,

0 < θF (s) ≤ sf(s).

By using the Nehari manifold method, Zhang and Zhao [14] proved the exis-
tence and asymptotical behavior of ground state solutions for (1.1) when the
nonlinearity f satisfies f = |u|p−1u. The aim of this paper is to investigate
the asymptotically linear Schrödinger equation on locally finite graphs and
extend the results of [14].

Before introducing the assumptions on the nonlinearity f and the po-
tential function a in (1.1), we give some preliminary settings. For any two
functions u, v : V → R, the gradient form of u and v on the graph is defined
by

Γ(u, v)(x) :=
1

2µ(x)

∑
y∼x

ωxy(u(y)− u(x))(v(y)− v(x)). (1.3)
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Setting Γ(u) = Γ(u, u), we denote the length of its gradient by

|∇u|(x) :=
√

Γ(u)(x) =

(
1

2µ(x)

∑
y∼x

ωxy(u(y)− u(x))2

)1/2

. (1.4)

The integral of a function u : V → R is defined by∫
V

udµ =
∑
x∈V

µ(x)u(x). (1.5)

Let Cc(V ) be the set of all functions with compact support, and W 1,2(V ) be
the completion of Cc(V ) under the norm

∥u∥W 1,2(V ) =

(∫
V

(
|∇u|2 + u2

)
dµ

)1/2

. (1.6)

We define a space of functions

Hλ =

{
u ∈ W 1,2(V ) :

∫
V

λa(x)u2dµ < +∞
}
, (1.7)

with a norm

∥u∥Hλ
=

(∫
V

(
|∇u|2 + (λa(x) + 1)u2

)
dµ

)1/2

, (1.8)

and the inner product

⟨u, v⟩Hλ
=

∫
V

(Γ(u, v) + (λa(x) + 1)uv) dµ, ∀u, v ∈ Hλ.

Then, Hλ is a Hilbert space. For any x, y ∈ V , the distance d(x, y) is defined
by the minimal number of edges which connect x and y. Given a subset
Ω ⊂ V , we call Ω a bounded domain in V if the distance d(x, y) is uniformly
bounded from above for any x, y ∈ Ω. The boundary of Ω is defined as

∂Ω := {x ∈ V \Ω : ∃ y ∈ Ω such that xy ∈ E}. (1.9)

Now, we give the following conditions on f and a in problem (1.1):
(F1) f : V × R → R, f(s) is continuous in s, f(s) ≡ 0 for all s ≤ 0 and

f(s)s−1 → 0 as s → 0+.
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(F2) Let

µ∗ = inf

{∫
V

[
|∇u|2 + (λa(x) + 1)u2

]
dµ : u ∈ Hλ,

∫
V

u2dµ = 1

}
. (1.10)

There exists l ∈ (µ∗,+∞) such that f(s)s−1 → l as s → +∞.

(F3) Let F (s) =
∫ s

0
f(t)dt and Φ(s) =

1

2
f(s)s− F (s). F (s),Φ(s) ≥ 0 for

all s ∈ R, and Φ(s) → +∞ as s → +∞.
(F4) f(s)s

−1 is strictly increasing in s > 0.
(A1) a : V → [0,+∞), and the potential well Ω = {x ∈ V : a(x) = 0} is

a nonempty, connected and bounded domain in V .
(A2) There exists a vertex x0 ∈ V such that a(x) → +∞ as d(x, x0) →

+∞.
The functional related to (1.1) is defined by

Iλ(u) =
1

2

∫
V

(
|∇u|2 + (λa(x) + 1)u2

)
dµ −

∫
V

F (u)dµ, u ∈ Hλ. (1.11)

From Proposition 2.1, we deduce that Iλ ∈ C1(Hλ,R) and

⟨I ′

λ(u), v⟩ =
∫
V

(Γ(u, v) + (λa(x) + 1)uv) dµ−
∫
V

f(u)vdµ, ∀ v ∈ Hλ. (1.12)

A function u ∈ Hλ is said to be a nonzero solution of problem (1.1) if µ{x ∈
V : u(x) ̸= 0} > 0 and ⟨I ′

λ(u), v⟩ = 0 for any v ∈ Hλ. We call a nonzero
solution u0 of (1.1) as a ground state solution if Iλ(u0) ≤ Iλ(u) for any
nonzero solution u of (1.1).

Throughout this paper, we always assume that there exists a constant
µmin > 0 such that µ(x) ≥ µmin for all x ∈ V . The main results of this paper
are as follows:

Theorem 1.1. Let G = (V,E) be a locally finite and connected graph. As-
sume that (A1), (A2), (F1), (F2) and (F3) hold. Then for any λ > 1, there
exists a nonzero solution u of (1.1).

Theorem 1.2. Under the same conditions in Theorem 1.1, then for any
λ > 1, there exists a ground state solution uλ of (1.1).

To investigate the behavior of uλ as λ → ∞, we introduce the following
Dirichlet problem {

−∆u+ u = f(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.13)
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where Ω is the potential well given by (A2). It is suitable to study (1.13) in
the Hilbert space W 1,2

0 (Ω), which is the completion of Cc(Ω) under the norm

∥u∥W 1,2
0 (Ω) =

(∫
Ω∪∂Ω

|∇u|2dµ+

∫
Ω

u2dµ

)1/2

.

The functional related to (1.13) is defined by

IΩ(u) =
1

2

(∫
Ω∪∂Ω

|∇u|2dµ+

∫
Ω

u2dµ

)
−
∫
Ω

F (u)dµ, u ∈ W 1,2
0 (Ω). (1.14)

We remark that unlike in Euclidean Spaces, we do not have |∇u|(x) = 0 for
x ∈ ∂Ω by the definitions of (1.4) and (1.9). Moreover, we find that (1.13)
is some kind of limit problem for (1.1) as λ → +∞. Precisely, we have the
following theorem.

Theorem 1.3. Let G = (V,E) be a locally finite and connected graph. As-
sume that (A1), (A2), (F1)-(F4) and λ > 1 hold. Then, for any sequence
λk → ∞, up to a subsequence, the corresponding ground state solutions uλk

of (1.1) strongly converge in W 1,2(V ) to a ground state solution u0 of (1.13).

2. Existence of a ground state solution

In this section, we firstly prove that (1.1) has a nonzero solution. For
that, we introduce an embedding result from [14] Lemma 2.6.

Proposition 2.1. Assume that λ > 1 and a(x) satisfies (A1) and(A2). Then
Hλ is continuously embedded into Lq(V ) for any q ∈ [2,+∞) and there exists
a constant C > 0 independent of λ such that for any u ∈ Hλ, ∥u∥q,V ≤
C∥u∥Hλ

. Moreover, for any bounded sequence {uk} ⊂ Hλ, there exists u ∈ Hλ

such that, up to a subsequence,
uk ⇀ u in Hλ,
uk(x) → u(x) ∀ x ∈ V,
uk → u in Lq(V ).

Then we show that the functional Iλ defined by (1.11) has a mountain
pass geometry.

Lemma 2.1. Let the conditions (A1),(A2), (F1) and (F2) hold. Then for
λ > 1, there exist two constants ρ, η > 0 such that

inf {Iλ(u) : u ∈ Hλ, ∥u∥Hλ
= ρ} ≥ η.
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Proof. For any ε > 0, it follows from (F1), (F2) that there exists Cε > 0
such that

|f(s)| ≤ ε|s|+ Cε|s|2, ∀s ∈ R,
Then by Proposition 2.1, we have for any u ∈ Hλ,∫

V

F (u)dµ ≤ ε

2

∫
V

|u|2dµ+
Cε

3

∫
V

|u|3dµ

≤ εC1

2
∥u∥2Hλ

+
∼
C ε∥u∥3Hλ

.

(2.1)

This yields

Iλ(u) ≥
1− εC1

2
∥u∥2Hλ

−
∼
C ε∥u∥3Hλ

. (2.2)

Choosing ε ∈ (0, 1
C1
) and ρ > 0 small enough, we see that there is η > 0 such

that this lemma holds. □

Lemma 2.2. Let the conditions (A1),(A2), (F1) and (F2) hold. Then for
λ > 1, there exists e ∈ Hλ with ∥e∥Hλ

> ρ such that Iλ(e) < 0, where ρ is
given by Lemma 2.1.

Proof. By the definition of µ∗ in (F2), there exists ϕ ∈ Hλ such that∫
V
ϕ2dµ = 1 and µ∗ ≤ ∥ϕ∥2Hλ

< l. Then, by (F1), (F2) and Fatou’s lemma
we get

lim
t→+∞

Iλ(tϕ)

t2
=

1

2
∥ϕ∥2Hλ

− lim
t→+∞

∫
V

F (tϕ)

t2ϕ2
ϕ2dµ

≤ 1

2
∥ϕ∥2Hλ

− 1

2
l

∫
V

ϕ2dµ

≤ 1

2
(µ∗ − l)

∫
V

ϕ2dµ < 0,

and the lemma is proved by taking e = t0ϕ with t0 > 0 large enough. □

Based on Lemmas 2.1 and 2.2, by Mountain Pass Theorem there is a
sequence {un} ⊂ Hλ such that

Iλ(un)
n−→ c ≥ η and (1 + ∥un∥)∥I

′

λ(un)∥H∗
λ

n−→ 0, (2.3)

where H∗
λ denotes the dual space of Hλ.

In the following lemma, we show that {un} is bounded in Hλ.
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Lemma 2.3. Let the conditions (A1),(A2) and (F1)-(F3) hold. Then for
λ > 1, {un} is bounded in Hλ.

Proof. Suppose by contradiction that ∥un∥Hλ

n−→ +∞. Letting wn =
un

∥un∥Hλ

, then ∥wn∥Hλ
= 1 and there exists w ∈ Hλ such that, up to a

subsequence, wn
n
⇀ w weakly in Hλ. From (2.3) we get

o(1) =
⟨I ′

λ(un), un⟩
∥un∥2Hλ

= 1−
∫
V

f (un(x))

un(x)
|wn(x)|2dµ. (2.4)

Here, and in what follows, o(1) denotes a quantity which tends to zero as
n → ∞.

Set

L := sup

{
f(s)

s
: s ̸= 0

}
. (2.5)

By (F1)(F2) we have 0 < L < +∞. Since wn
n
⇀ w weakly in Hλ, by

Proposition 2.1, we get wn
n−→ w strongly in L2(V ). Therefore,∫

V

f (un(x))

un(x)
|wn(x)|2dµ ≤

∫
V

L|wn(x)|2dµ = o(1) + L

∫
V

|w(x)|2dµ. (2.6)

From (2.4), we deduce that
∫
V
|w(x)|2dµ > 0.

Let A = {x ∈ V : w(x) ̸= 0}. Then µ(A) > 0. Noting that un(x)
n−→

+∞ for x ∈ A, from (2.3) and (F3) we get a contradiction that

c+ o(1) = Iλ(un)−
1

2
⟨I ′

λ(un), un⟩

=

∫
V

(
1

2
f(un)un − F (un)

)
dµ

=

∫
V

Φ(un)dµ ≥
∫
A

Φ(un)dµ
n−→ +∞.

(2.7)

So, {un} is bounded in Hλ. □

Proof of Theorem 1.1 By Lemma 2.3, {un} is bounded in Hλ. Then
there exists a subsequence, still denoted by {un}, such that un

n
⇀ u weakly in

Hλ. By Proposition 2.1, we get un
n−→ u strongly in Lq(V ) for q ∈ [2,+∞).

Then from (2.3) we deduce that∣∣∣∣⟨un, φ⟩Hλ
−
∫
V

f(un)φdµ

∣∣∣∣ = o(1), ∀ φ ∈ Hλ, (2.8)
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which implies that ⟨I ′

λ(u), φ⟩ = 0 for any φ ∈ Hλ.
By (2.5) and Hölder inequality, we have∣∣∣∣∫

V

f(un)(un − u)dµ

∣∣∣∣ = ∣∣∣∣∫
V

f(un)

un

(un)(un − u)dµ

∣∣∣∣
≤ L

∫
V

(un)(un − u)dµ

≤ L

(∫
V

(un − u)2dµ

)1/2(∫
V

u2
ndµ

)1/2

= o(1).

(2.9)
Taking φ = un − u in (2.8), we have

⟨un, un − u⟩Hλ
=

∫
V

f(un)(un − u)dµ+ o(1) = o(1). (2.10)

On the other hand, we have ⟨u, un − u⟩Hλ
= o(1) by un ⇀ u weakly in Hλ.

This and (2.10) lead to un → u strongly in Hλ. Then Iλ(u) = c > 0, which
implies that µ{x ∈ V : u(x) ̸= 0} > 0. Thus, u is a nonzero solution of (1.1).
□

Proof of Theorem 1.2 In order to get the ground state of (1.1), we
consider the following minimization problem

c0 = inf {Iλ(u) : u ∈ Mλ} , (2.11)

where

Mλ =
{
u ∈ Hλ : µ{x ∈ V : u(x) ̸= 0} > 0, and ⟨I ′

λ(u), u⟩ = 0
}
.

Theorem 1.1 implies Mλ ̸= ∅. For any u ∈ Mλ, by (F3) we have

Iλ(u) = Iλ(u)−
1

2
⟨I ′

λ(u), u⟩ =
∫
V

Φ(u)dµ ≥ 0,

which implies that c0 ≥ 0.
From (F1)(F2), for any ε > 0, there exists C(ε) > 0 such that

∥u∥2Hλ
=

∫
V

f(u)udµ ≤ ε∥u∥2Hλ
+ C(ε)∥u∥3Hλ

.

Thus, there exists δ > 0 such that ∥u∥Hλ
≥ δ > 0 for any u ∈ Mλ.

8



Choosing a minimization sequence {uk} ⊂ Mλ such that Iλ(uk)
k−→ c0,

by the proof of Theorem 1.1 there exists uλ ∈ Hλ such that uk
k−→ uλ

strongly in Hλ. Then we deduce that Iλ(uλ) = c0, ⟨I
′

λ(uλ), φ⟩ = 0 for any
φ ∈ Hλ, and ∥uλ∥Hλ

≥ δ > 0. Therefore, uλ is a ground state of (1.1). □

3. Asymptotic behavior of ground state solutions

In this section, we show the asymptotic behavior of ground state solutions
uλ as λ → +∞. Firstly, we give the following embedding result from [21,
Lemma 2.7].

Proposition 3.1. Assume that Ω is a bounded domain in V . Then W 1,2
0 (Ω)

is continuously embedded into Lq(Ω) for any q ∈ [1,+∞). Moreover, for any
bounded sequence {uk} ⊂ W 1,2

0 (Ω), there exists u ∈ W 1,2
0 (Ω) such that, up to

a subsequence,  uk ⇀ u in W 1,2
0 (Ω),

uk(x) → u(x) ∀ x ∈ Ω,
uk → u in Lq(Ω).

Next, we prove that (1.13) is some kind of limit problem for (1.1) as
λ → +∞.

Lemma 3.1. Set

mλ = inf{Iλ(u), u ∈ Mλ}, and mΩ = inf{IΩ(u), u ∈ MΩ},

where

MΩ =
{
u ∈ W 1,2

0 (Ω) : µ{x ∈ Ω : u(x) ̸= 0} > 0, and ⟨I ′

Ω(u), u⟩ = 0
}
.

Then under the conditions of Theorem 1.2, we have mλ → mΩ as λ → +∞.

Proof. Since W 1,2
0 (Ω) ⊂ Hλ, we have mλ ≤ mΩ for any λ > 1. Take a

sequence λk → +∞ such that

lim
k→∞

mλk
= M ≤ mΩ, (3.1)

and let uλk
∈ Mλk

be such that Iλ(uλk
) = mλk

. By the proof of Theorem 1.2,
we get M ≥ 0. Similar to the proof of Lemma 2.3, we deduce that {uλk

} is

9



bounded in W 1,2(V ). Then, up to a subsequence, there exists u0 ∈ W 1,2(V )
such that uλk

⇀ u0 weakly in W 1,2(V ). Moreover, by uλk
∈ Mλk

and
Proposition 2.1, we deduce that there exists a constant δ1 > 0, which is
independent of λk such that ∫

V

u2
λk
dµ ≥ δ1. (3.2)

Thus, from uλk
→ u0 strongly in L2(V ), we get

∫
V
u2
0dµ ≥ δ1 > 0.

We claim that u0|Ωc = 0. Otherwise, there exists a vertex x0 ̸∈ Ω such
that u0(x0) ̸= 0. Since uλk

∈ Mλk
, we get

Iλk
(uλk

) = Iλk
(uλk

) +
1

2

〈
I

′

λk
(uλk

), uλk

〉
= ∥uλk

∥2Hλ
+

∫
V

(
1

2
f(uλk

)uλk
− F (uλk

)

)
dµ

= ∥uλk
∥2Hλ

+

∫
V

Φ(uλk
)dµ ≥ ∥uλk

∥2Hλ

≥
∫
V

λka(x)u
2
λk
dµ ≥ λka(x0)µ(x0)u

2
λk
(x0).

(3.3)

Since a(x0) > 0 for x0 ̸∈ Ω, µ(x0) ≥ µmin > 0, uλk
(x0) → u0(x0) ̸= 0 as

λk → +∞, from (3.3) we get

mλk
= lim

k→∞
Iλk

(uλk
) = +∞,

which is a contradiction with (3.1).
Since uλk

⇀ u0 in W 1,2(V ) and uλk
→ u0 in Lq(V ) for any q ∈ [2,+∞),

by Fatou’s lemma and Lebesgue dominated convergence theorem we get∫
Ω∪∂Ω

(
|∇u0|2 + u2

0

)
dµ ≤

∫
V

(
|∇u0|2 + u2

0

)
dµ

≤ lim inf
k→∞

∫
V

(
|∇uλk

|2 + u2
λk

)
dµ

≤ lim inf
k→∞

∫
V

(
|∇uλk

|2 + (λka(x) + 1)u2
λk

)
dµ

= lim inf
k→∞

∫
V

f(uλk
)uλk

dµ =

∫
V

f(u0)u0dµ.
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Noting that u0|Ωc = 0, we get∫
Ω∪∂Ω

(
|∇u0|2 + u2

0

)
dµ ≤

∫
Ω

f(u0)u0dµ.

Then there exists α ∈ (0, 1] such that∫
Ω∪∂Ω

(
|α∇u0|2 + |αu0|2

)
dµ =

∫
Ω

f(αu0)αu0dµ.

So, we have αu0 ∈ MΩ, and

mΩ ≤ IΩ(αu0) =
1

2

∫
Ω∪∂Ω

(
|∇αu0|2 + |αu0|2

)
dµ−

∫
Ω

F (αu0)dµ

=

∫
V

1

2
(f(αu0)αu0) dµ−

∫
V

F (αu0)dµ

≤
∫
V

1

2
f(u0)u0dµ−

∫
V

F (u0)dµ

= lim
k→∞

[

∫
V

1

2
f(uλk

)uλk
dµ−

∫
V

F (uλk
)dµ]

= lim
k→∞

[

∫
V

1

2

(
|∇uλk

|2 + u2
λk

)
dµ−

∫
V

F (uλk
)dµ

= lim
k→∞

Iλk
(uλk

) = lim
k→∞

mλk
= M

By (3.1), we get M = mΩ. Thus, limλ→+∞ mλ = mΩ. □

Proof of Theorem 1.3 By the proof of Lemma 3.1, we see that {uλk
} is

bounded in W 1,2(V ), and we may assume that uλk
⇀ u0 in W 1,2(V ). Then

we have
∫
V
u2
0dµ > 0 and u0|Ωc = 0.

Now, we claim that λk

∫
V
a(x)u2

λk
dµ → 0 and

∫
V
|∇uλk

|2dµ →
∫
V
|∇u0|2dµ,

as k → +∞. Suppose by contradiction that lim
k→∞

λk

∫
V
a(x)u2

λk
dµ = δ > 0.

We have ∫
Ω∪∂Ω

(
|∇u0|2 + |u0|2

)
dµ <

∫
V

(
|∇u0|2 + |u0|2

)
dµ+ δ

≤ lim inf
k→∞

∫
V

[
|∇uλk

|2 + (λka(x) + 1)u2
λk

]
dµ

= lim inf
k→∞

∫
V

f(uλk
)uλk

dµ =

∫
Ω

f(u0)u0dµ.
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Then there exists α ∈ (0, 1) such that αu0 ∈ MΩ. Similarly, if lim inf
k→∞

∫
V
|∇uλk

|2dµ >∫
V
|∇u0|2dµ, we also have

∫
Ω∪∂Ω (|∇u0|2 + |u0|2) dµ <

∫
Ω
f(u0)u0dµ. Then in

both cases, we can find α ∈ (0, 1) such that αu0 ∈ MΩ. Therefore, by (F4)
we have

mΩ ≤ IΩ(αu0) =
1

2

∫
Ω∪∂Ω

(
|∇αu0|2 + |αu0|2

)
dµ−

∫
Ω

F (αu0)dµ

=
1

2

∫
Ω∪∂Ω

f(αu0)αu0dµ−
∫
Ω

F (αu0)dµ

=

∫
Ω

[
1

2
f(αu0)αu0 − F (αu0)

]
dµ =

∫
Ω

Φ(αu0)dµ

<

∫
Ω

Φ(u0)dµ ≤
∫
V

Φ(u0)dµ

≤ lim inf
k→∞

∫
V

[
1

2
f(uλk

)uλk
− F (uλk

)

]
dµ

= lim inf
k→∞

[∫
V

1

2

(
|∇uλk

|2 + (λka(x) + 1)u2
λk

)
dµ

]
−
∫
V

F (uλk
)dµ

= lim inf
k→∞

Iλk
(uλk

) = lim
k→∞

mλk
= mΩ,

which leads to a contradiction. Thus, we get ∥uλk
∥W 1,2(V ) → ∥u0∥W 1,2(V ) as

λk → +∞. Moreover, similar to the proof of Theorem 1.2, by Proposition 3.1
and Lemma 3.1, we can deduce that u0 is a ground state solution of (1.13). □
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