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Abstract

Climate change threatens the resource adequacy of future power sys-
tems. Existing research and practice lack frameworks for identifying
decarbonization pathways that are robust to climate-related uncertainty.
We create such an analytical framework, then use it to assess the
robustness of alternative pathways to achieving 60% emissions reduc-
tions from 2022 levels by 2040 for the Western U.S. power system.
Our framework integrates power system planning and resource adequacy
models with 100 climate realizations from a large climate ensemble.
Climate realizations drive electricity demand; thermal plant availabil-
ity; and wind, solar, and hydropower generation. Among five initial
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2 RDM decarbonization

decarbonization pathways, all exhibit modest to significant resource ade-
quacy failures under climate realizations in 2040, but certain pathways
experience significantly less resource adequacy failures at little addi-
tional cost relative to other pathways. By identifying and planning for
an extreme climate realization that drives the largest resource ade-
quacy failures across our pathways, we produce a new decarbonization
pathway that has no resource adequacy failures under any climate real-
izations. Our framework can help planners adapt to climate change, and
offers a unique bridge between energy system and climate modelling.

Keywords: robust decision-making, climate adaptation, capacity expansion,
single model initial condition large ensemble, power system decarbonization

1 Introduction

Rapidly transitioning to a decarbonized electric power sector is crucial to
aggressively mitigate climate change and meet emissions reductions targets
[1, 2]. In the United States, the Inflation Reduction Act (IRA) is poised to
accelerate low-carbon investments in the power sector, which could approach
370 billion USD by 2033 [3, 4]. Which power sector decarbonization pathway
will be taken remains uncertain, where a pathway is defined by where, when,
and what decarbonization investments occur [5–11]. As they decarbonize, bulk
(or tranmission-scale) power systems will be increasingly affected by climate
change [12]. Increasing ambient air temperatures will increase peak and total
electricity demand [13–15] and reduce available capacity from thermal and
solar generators [13, 16–18]. Wind, solar, and precipitation changes will also
affect wind, solar, and hydropower generation potential [13, 19–21]. These
effects could compound to undermine resource adequacy (RA), or a system’s
ability to continually balance electricity supply and demand [22–24]. Under-
standing the vulnerability of decarbonizing power systems to potential future
climate realizations is critical for achieving reliable, affordable, and clean power
systems - the focus of our study [9, 25].

To account for decarbonization- and climate-related uncertainty in invest-
ment decisions, prior literature optimizes capacity investment decisions given
different decarbonization pathways and future climate scenarios [5, 9, 26–32].
This literature uses sensitivity or scenario analysis to incorporate climate-
related uncertainty within deterministic modeling frameworks. For instance,
Fonseca et al. [5] sample 3 of 20 global climate models (GCMs) to include as
scenarios in a deterministic long-term power system planning model. In other
words, this literature aims to improve investment decisions by improving pre-
dictions of future weather within standard modeling frameworks. But climate
change poses deep uncertainty [33], which undermines the value of methods
focused on better predictions [34], particularly for power system planning
models that must significantly simplify uncertainty to remain computationally
tractable. In the near-term (prior to 2050), inter-annual (or internal) climate
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variability, which is driven by the dynamics of the climate system and sen-
sitive to initial conditions [35–38], is the primary source of climate-related
uncertainty [37, 39] (as opposed to model or emissions scenario uncertainty
[40]). Inter-annual variability superimposed on a non-stationary background
climate and emission trajectory leads to deep uncertainty on climate impacts
[41]. Under deep uncertainty, methods instead focused on identifying robust
strategies or alternatives are better suited to informing decisions [34]. Such
decision support is urgently needed by power system planners and regulators,
who are tasked with ensuring resource adequacy across the full range of poten-
tial future climate realizations, which combine secular trends and inter-annual
climate variability [38]. Recent rolling outages in California and Texas [42, 43]
and resource adequacy warnings elsewhere in the United States [44] underscore
this urgency.

In response to these needs, we construct a new analytical framework for
planning decarbonizing power systems under deep climate uncertainty by
drawing on a concept from the decision science literature: robust decision mak-
ing (RDM) [34]. RDM has been used to inform climate adaptation strategies,
e.g. in water resources management [45–51]. It has also been used in the power
sector, e.g. to evaluate policy strategies for European power systems against
shocks [52]. But our framework is the first to apply RDM to planning decar-
bonizing power systems under deep climate uncertainty. By integrating power
system planning and operational models with potential climate realizations
from a single model initial-condition large ensemble (SMILE) [53, 54], our
framework generates alternative decarbonization pathways; characterizes the
vulnerability of and trade-offs between those pathways under potential climate
realizations; and uses generated insights to identify new alternative decar-
bonization pathways that are robust to climate-related uncertainty (Figure 1).
SMILEs have limited prior use in power systems research [55, 56] even though
they are designed to sample inter-annual variability and provide many real-
izations of future climate, encoding multiple extreme events and a range of
possible meteorological projections [57, 58].

We use our framework to answer: how can we design decarbonizing power
systems to be robust against deep climate uncertainty? We conduct our study
for the U.S. Western Interconnect, which we divide into five subregions per
Western Electricity Coordinating Council’s resource adequacy assessments
(Figure E.1, [59]). We use 100 members from the Community Earth System
Model 2 (CESM2) Large Ensemble (LENS2) through 2040, which was driven
by the SSP3-7.0 emissions scenario and reaches 1.65°C of global warming by
2040 relative to pre-industrial [60]. For each ensemble member, we obtain sur-
face air temperatures, relative humidity, surface solar radiation, 10m wind
speeds, and surface runoff at daily and 1° spatial resolution (approx. 100 km by
100 km) through 2040 across our study region. While this resolution is lower
than what is preferred for power system modeling, higher resolution climate
datasets often do not sample as large of a range of internal climate variability
as LENS2, particularly in the time-span of interest to us (through 2040) and
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when focused on extreme events. In selecting LENS2, we also emphasize inter-
nal variability over climate response uncertainty. For each ensemble member,
we translate meteorological variables to spatially-explicit timeseries of elec-
tricity demand; maximum potential wind, solar, and hydropower generation;
and thermal generator deratings and forced outage rates. To analyze the vul-
nerability and trade-offs of alternative decarbonization pathways, we generate
five decarbonization pathways by running a capacity expansion (or long-term
planning) model of the Western Interconnect using power system variables
from five sampled ensemble members. Our decarbonization pathways reduce
interconnect-wide power system CO2 emissions by 60% from 2022 levels by
2040. For each decarbonization pathway, we approximate its regional resource
adequacy in 2040 under each of the 100 ensemble members using economic
dispatch and surplus available capacity models. From this large set of alter-
native future systems and climate realizations, we examine vulnerabilities and
trade-offs of these decarbonization pathways across potential climate realiza-
tions. Finally, we identify a future climate realization that generates the largest
resource adequacy failures across decarbonization pathways in 2040, then use
that climate realization to generate a new decarbonization pathway robust to
all 100 ensemble members.

(a) (b)

Fig. 1: (a) Map of our Western Interconnect study region, which is divided
into 5 sub-regions (differentiated by color). Blocks at edges of interconnect
correspond to LENS2 grid cells. (b) Our analytical framework integrates 100
ensemble members (or climate realizations) from the LENS2 dataset with
power system capacity expansion, economic dispatch, and surplus available
capacity (SAC) models. For each region, this framework yields 500 daily time-
series of energy not served and surplus available capacity in 2040, or 1 daily
timeseries for each climate realization, decarbonization pathway, and metric.
Not shown is identification of an extreme 2040 climate realization, which is
then fed back into the capacity expansion model to generate a new decar-
bonization pathway.
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2 Methods

2.1 Robust Decision-making Framework

We use robust decision-making (RDM) to quantify the robustness of alterna-
tive decarbonization pathways in the Western Interconnect power system to
potential future climate realizations. We first conduct exploratory modeling
to generate five decarbonization pathways for the Western Interconnect using
a capacity expansion (or long-term planning) model (Section 2.2). We then
stress test each decarbonization pathway to all 100 LENS2 ensemble mem-
bers (Section 2.4). For each pathway and ensemble member, we approximate
resource adequacy by quantifying daily Surplus Available Capacity (SAC) and
Energy Not Served (ENS) in 2040 (Section 2.3). Finally, we identify the cli-
mate ensemble member that drives the largest combined energy not served
(ENS) across decarbonization pathways in California (our largest load region)
in 2040; rerun our planning model using that ensemble member; and quan-
tify our resource adequacy metrics for that pathway against all 100 climate
ensemble members.

2.2 Capacity Expansion Model and Decarbonization
Pathways

To generate alternative decarbonization pathways, we use a capacity expansion
(or long-term planning) model. We run the capacity expansion model (CEM)
in two year increments from 2023 to 2040, capturing coincident, spatially-
resolved meteorology and hydrology for each year (Section 2.4). The CEM
is a deterministic linear program that minimizes fixed plus variable costs
by deciding investment in wind plants, solar plants, and natural gas com-
bined cycle (NGCC) plants with or without carbon capture and sequestration
(CCS), and inter-regional transmission. These investment decisions differen-
tiate our ”decarbonization pathways”. The CEM also optimizes operation of
existing and new generators, and optimizes inter-regional transmission flows
using the simplified transport method. All generator capacity investment deci-
sions occur at the LENS2 grid cell level, i.e. on a 100 by 100 km grid across
our study region, while transmission investments occur at inter-regional lev-
els. We constrain thermal plant investments to grid cells that already contain
large thermal units. Given the immature state of CCS technology, we allow
the CEM to invest in NGCC or coal with CCS beginning in 2031. While we
recognize the important role of grid-scale storage in decarbonizing power sys-
tems, our climate data is only available at daily resolution (Section 2.4). As
such, we cannot model intra-day storage.

The CEM includes numerous system- and generator-level constraints. At
the system level, the CEM balances regional supply (generation plus imports
minus exports) and demand each day. To approximate system reliability stan-
dards, the CEM includes a 13% planning reserve margin, which requires
derated capacity to exceed peak demand by at least 13%. Derated capacity
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accounts for wind and solar generation potential; a fixed 5% forced outage
rate for wind and solar generators; temperature-dependent FORs for thermal
and hydropower plants; and weather-driven deratings of combustion turbine,
combined cycle, and coal-fired plants. At the generator level, wind and solar
generation is limited by daily, spatially-specific wind and solar capacity factors
(Section 2.4); hydropower generation is constrained by subregional monthly
total generation; and generation from combustion turbine, combined cycle, and
coal-fired plants is limited by daily, spatially-specific meteorology.

With the CEM, we generate five decarbonization pathways that each reduce
interconnect-wide CO2 emissions by 60% from 2022 levels by 2040. To create
these five pathways, we use meteorological timeseries from five sampled LENS2
members. These ensemble members are sampled to capture a range of warming
within the LENS2 ensemble. Specifically, we quantify warming level based on
the difference between historic (1985-2015) and mid-century (2035-2065) mean
surface temperature and relative humidity [61]. Warming and relative humidity
levels vary from 1.5 ◦C to 2.75 ◦C and 0.1 to -1.79, respectively, across sampled
ensemble members (Figure B.10). In using five sampled ensemble members,
our purpose is to create heterogeneous decarbonization pathways that could all
reach a given decarbonization target, then assess the pathways’ vulnerabilities,
trade-offs, and robustness. We do not create a pathway for each ensemble
member because creating pathways that span all climate- and decarbonization-
related uncertainty is not computationally tractable. Rather, researchers and
practitioners explore a subset of this uncertainty in analyses and long-term
plans. We therefore demonstrate our framework in a similar context, i.e. on
pathways that consider a subset of relevant uncertainty.

2.3 Decarbonization Pathways and Resource Adequacy
under Potential Climate Realizations

From our CEM, we obtain five decarbonization pathways, each planned for one
of five sampled ensemble members. To understand the vulnerability of each
decarbonization pathway to other potential ensemble members, we approxi-
mate the resource adequacy of each decarbonization pathway against all 100
ensemble members (or climate realizations) from LENS2. Because LENS2
provides daily values, we are unable to quantify resource adequacy (RA) of
the Western Interconnect at an hourly basis using a standard probabilistic
RA model. Instead, we approximate resource adequacy by quantifying daily
Surplus Available Capacity (SAC) and Energy Not Served (ENS).

To calculate daily ENS, we run an economic dispatch model (EDM) for
each decarbonization pathway output by our capacity expansion model in 2040.
The EDM minimizes the sum of operating, CO2 emission, inter-regional trans-
mission, and ENS costs by optimizing generation, inter-regional transmission,
and ENS decision variables. CO2 emission costs include a decarbonization-
pathway-specific CO2 price necessary to achieve the relevant CO2 emissions
cap in that year; we include this price instead of a cap to avoid infeasibility in
the EDM in climate realizations that preclude meeting the CO2 cap. The EDM
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includes several constraints from the CEM, including balancing supply and
demand within each of our five subregions while accounting for transmission
inflows and outflows; constraining regional monthly hydropower generation
to an energy budget; constraining wind and solar generation to spatially-
and temporally-differentiated capacity factors; and constraining fossil-based
thermal plant generation based on capacity deratings. Since we cannot proba-
bilistically sample generator outages like hourly resource adequacy models, the
EDM instead derates generators’ capacities based on temperature-dependent
or fixed forced outage rates (FORs). We run the EDM for a 1-year optimization
horizon. Inputs to the EDM include a decarbonization pathway and variables
driven by the given climate ensemble member (i.e., daily electricity demand,
monthly hydroelectric generation, daily solar and wind capacity factors, and
daily thermal plant forced outage rates and derates). See SI.F for the full EDM
formulation and key parameters.

From the EDM output, we directly obtain daily ENS and calculate SAC for
each region. SAC equals daily available non-hydropower capacity, hydropower
generation, and transmission imports minus demand and transmission exports
for each region. In this way, SAC indicates excess supply available in a region
to satisfy unexpected increases in demand. The lower the SAC, the greater the
risk of a supply shortfall, suggesting lower resource adequacy. Prior research
has used a net load metric as a proxy for resource adequacy [55, 62]. Our
SAC extends the net load metric by capturing not just daily wind and solar
generation potential, but also accounts for optimized hydroelectric dispatch;
temperature dependent outages in thermal and hydroelectric power plants;
capacity deratings in fossil-based thermal power plants; and electricity flows
between regions. See SI.G for more details on SAC calculation.

2.4 LENS2 Climate Data and Conversion to Power
System Variables

In the near-term (prior to 2050), internal variability (versus model or emissions
scenario uncertainty) is the primary source of climate-related uncertainty [37,
39]. To capture the role of internal variability in driving potential climates
through 2040, we use the CESM2 Large Ensemble (LENS2) [60]. This dataset is
a single model initial-condition large ensemble (SMILE) following the SSP3-7.0
emissions trajectory. We treat this global emissions trajectory as independent
of our system’s emissions trajectory, as internal variability - not emissions
uncertainty - is the primary source of uncertainty over our study period.

The LENS2 dataset consists of 100 ensemble members which are split into
2 groups each consisting of 50 realizations, where each group is driven by one
forcing condition. Each of the 50 realizations in the two groups are initiated
from different initial conditions sampled to reflect micro and macro perturba-
tions in the pre-industrial control simulation. Unless noted otherwise, all the
variables with a specified frequency represent an average over the inherent time
periods, e.g. daily temperature is daily averaged temperatures and monthly
runoffs are monthly averaged runoffs. We obtain daily surface temperature,
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10m wind speed, surface downwelling solar flux, surface atmospheric pressure,
surface relative humidity, and monthly surface liquid runoff from 1980-2050
for each ensemble member. We obtain these variables at the highest spatial
resolution possible, at a 100 km by 100 km grid. While this spatial and tem-
poral resolution is lower than what is preferred for power system modeling,
higher resolution climate datasets (e.g., from statistical or dynamical down-
scaling) often do not sample as large of a range of internal climate variability
as LENS2, particularly in the time-span of interest to us (through 2040) and
when focusing on extreme events. On the other hand, this approach does not
sample climate response uncertainty, i.e., how different climate models portray
the future response to greenhouse gas forcing.. We discuss the value of using a
large ensemble like LENS2 and how it can assist creation of higher resolution
products in our Discussion. More information on these variables are in SI.B.

We apply a mean bias correction to LENS2 surface temperatures using
surface temperatures from the ERA5 reanalysis data [63, 64]. To bias cor-
rect runoff for forecasting hydroelectric generation, we use a mean bias scaling
method for each of the constituent drought regions [ref B.3]. More details on
the bias correction methods are in SI.B.1. Other studies using large ensem-
bles for quantifying climate impacts have also used such mean bias correction
methods [39]. We do not use more sophisticated bias correction methods like
quantile mapping (QM) as it fits the distribution of projections to observations
(historical climate), which may lead to loss of changes in internal variability
in the projections. We do not find a strong bias in solar radiation, so we did
not bias correct it. Though we identify biases in 10 m wind speeds relative to
ERA5, wind power capacity factors derived from bias corrected wind speeds
are much lower compared to other observational datasets. As a result, we use
the native LENS2 wind speed data in our analysis.

We use different models to derive power system variables from LENS2
data. We calculate daily solar and wind capacity factors for each LENS2 grid
cell using deterministic equations (SI.B.2). We calculate monthly hydroelectric
generation using a linear regression model using surface runoff as the predic-
tor variable. We obtain the model for each drought region in the Western US
[65] by training observed hydroelectric generation [66] trained against ERA5
surface runoff. We then forecast hydroelectric generation using bias corrected
surface runoff from the LENS2 data (SI.B.3). We calculate demand for each
of our five subregions using a piecewise linear regression model using daily
temperature as the predictor variable. The regression model is trained using
observed demand data and ERA5 surface temperatures, so ignores technolog-
ical or population changes (SI.C). We calculate temperature-dependent forced
outage rates for thermal power plants using plant-type-specific relationships
[67] (SI.D). We also calculate capacity deratings of fossil-based thermal power
plants for each LENS2 grid cell using plant-type-specific relationships between
deratings and air temperatures, relative humidity, and/or air pressure (SI.D).



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Springer Nature 2021 LATEX template

RDM decarbonization 9

3 Results

3.1 Capacity Investments across Decarbonization
Pathways

We first examine the five decarbonization pathways output by our capacity
expansion model. In creating these pathways using five sampled LENS2 ensem-
ble members rather than creating 100 pathways using each of the 100 LENS2
ensemble members, we demonstrate the value of our framework in analyzing
a limited number of alternatives generated by computationally complex plan-
ning models, similar to how alternatives are incorporated in system planning
in practice. Each pathway is defined by its ”fleet” of energy generator types.
Our pathways decarbonize primarily through investment in wind and solar
capacity, but exhibit different levels of investment (Figure 2). Interconnect-
wide solar and wind capacity increase from roughly 40 and 30 GW in 2022,
respectively, to up to 129 and 46 GW in 2040, respectively, across pathways.
Between pathways, wind and solar capacities in 2040 range from 34 to 46 GW
and from 103 to 129 GW, respectively. Small amounts (less than 4 GW) of
NGCC with carbon capture and sequestration (CCS) are also deployed in four
decarbonization pathways. Heterogeneity in solar and natural gas capacity
largely drives differences in total installed capacity between pathways, which
ranges from 252 to 280 GW. Solar capacity investment largely occurs in three
regions - California, Desert Southwest, and Central - with high quality solar
resources, while wind investment largely occurs in the Northwest, which has
high quality wind resources (Figure A.1). No investment in interregional trans-
mission beyond existing capacity occurs. Growth in wind, solar, and NGCC
capacity displace other capacity, including coal-fired capacity, and replace lost
capacity from the retirement of the Diablo Canyon nuclear generating station.
Generation by plant type follows similar trends as capacity investments. Across
pathways, wind, solar, natural gas, and hydropower account for roughly 7-13%,
31-37%, 23-27%, and 20-24% of annual generation, respectively, in 2040.

3.2 Resource Adequacy of Decarbonization Pathways
under Future Climate Realizations

For each decarbonization pathway, we use LENS2 to quantify daily electricity
supply and demand under 100 potential climate realizations in any given year.
Using daily supply and demand, we approximate resource adequacy through
two metrics: daily surplus available capacity (SAC) and daily energy not served
(ENS), both quantified in units of electricity. SAC indicates excess electricity
supply available in a region to satisfy unexpected increases in demand, while
ENS equals the difference between electricity demand and supply. A negative
daily SAC value indicates ENS occurs, while larger positive SAC values indi-
cate greater redundancy against supply shortfalls. Given daily SAC and ENS
for each of our five decarbonization pathways under each of our 100 ensem-
ble members, we then calculate the annual minimum SAC (”minimum SAC”),
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Fig. 2: (a) Installed capacity and (b) electricity generation by generator type
across Western Interconnect in 2040 for each decarbonization pathway, which
are labeled by the LENS2 ensemble member used to drive the capacity expan-
sion model (detailed in Section 4.2). CC stands for natural gas combined cycle,
CCCCS for CC with carbon capture and sequestration, and PV for photo-
voltaic.

which indicates the fleet’s largest susceptibility to supply shortfalls in a given
year, and total annual ENS (”total ENS”), which indicates the fleet’s total
supply shortfall in a given year.

Figures 3 and A.2 show these two metrics for our three largest regions by
demand (California, Desert Southwest, and Northwest) and the Western Inter-
connect in 2040. Depending on the region, resource adequacy failures occur in
most or all decarbonization pathways under many climate realizations, as indi-
cated by negative SAC values and positive total ENS values. Pathways exhibit
significant differences in resource adequacy under future climate realizations.
For instance, in California in 2040, one decarbonization pathway (”r9i1301”,
or the pathway generated using the r9i1301 climate ensemble member) has a
maxiumum of 286 GWh of total yearly ENS, whereas the other pathways have
maximum total yearly ENS of 0-100 GWh, respectively. Across decarboniza-
tion pathways, certain climate realizations incur significantly greater ENS than
others (as indicated by vertical red stripes). For instance, of the total ENS
across all 2040 California pathways and all 100 climate realizations, none of
that ENS occurs in 79% of climate realizations, while 50% of that ENS occurs
in just 3% of climate realizations. Maximum ENS values are largely driven
by days with low hydropower and coinciding low wind and solar generation
(Figures A.3 - A.7).
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Fig. 3: Minimum annual SAC values for each subregion in 2040 (see Fig. 1 for
map of regions). Each panel corresponds to a realization of the lower right panel
of Fig. 1. Each row corresponds to one of the five decarbonization pathways,
labeled by the sampled ensemble member used in the capacity expansion model
to create the pathway. Within each row, there are 100 separate color bars that
indicate that pathway’s minimum annual SAC against each of our 100 climate
ensemble members. Minimum annual SAC values range from negative (red)
to positive (blue) red values indicate supply shortfalls (or resource adequacy
failures), while blue values indicate surplus capacity relative to demand.
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3.3 Carbon Dioxide Emissions and Costs of
Decarbonization Pathways under Climate
Realizations

Future climate variability will affect not only the resource adequacy of future
fleets, but also their CO2 emissions and operational costs through changes
in electricity demand; available wind, solar, and hydropower potential; and
generation from dispatchable (largely fossil) plants (Figure 4). Across our
decarbonization pathways, climate realizations could result in CO2 emissions
higher or lower than the CO2 cap by up to 28% and 27%, respectively. As with
resource adequacy (Figure 3), CO2 emissions from some decarbonization path-
ways are less vulnerable to climate variability than others. For instance, one
pathway (”r5i1231”, or generated using the r5i1231 climate ensemble mem-
ber) fails to meet the CO2 emissions cap in 70% of climate realizations, while
another pathway (”r10i1191”) only fails to meet the emissions cap in 20%
of realizations. Operational costs also vary across climate realizations in each
pathway, from $127 to $146 billion. No single meteorological variable drives the
observed variability in emissions and costs (Figure A.9). Rather, high emissions
generally occur in climate realizations with low wind, solar, and hydropower
generation and high demand.

Fig. 4: Same structure as Figure 3, but each color bar shows interconnect-
wide CO2 emissions as a fraction of the target CO2 emissions cap (left) or
interconnect-wide operational costs (right) in 2040.
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3.4 Trade-offs between Resource Adequacy and Costs

Power system planners must balance competing objectives of minimizing sys-
tem costs while meeting resource adequacy targets. Figure 5 compares each
decarbonization pathway’s total costs against the sum of annual minimum
SAC over the five sub-regions (Figure 3) across 2040 climate realizations. Total
costs include fixed investment costs, which vary between decarbonization path-
ways but not climate realizations, and operational costs (Figure 4), which vary
between decarbonization pathways and climate realizations. Cumulative total
costs from 2023 to 2040 range from $223-246 billion across pathways and cli-
mate variability. Although pathways are differentiated by their mean costs
across realizations, variability in operational costs induced by climate variabil-
ity introduces overlap in total cost ranges between pathways. Despite overlaps
between total costs, pathways can exhibit significant differences in resource
adequacy outcomes. For instance, one pathway (”r10i1191”, or the second
pathway from the right in Figure 5) only exhibits a small resource adequacy
failure (or a total regional minimum annual SAC value of -0.2 GWh) under one
climate realization, and has a positive mean SAC value across ensemble mem-
bers. Other pathways (e.g., the three pathways at left in Figure 5) have larger
resource adequacy failures (of up to -40 GWh SAC) under certain ensemble
members, and negative mean SAC values across ensemble members (of up to
-10 GWh). Selecting the r10i1191 pathway rather than other pathways would
eliminate resource adequacy failures at a median total cost difference of -1 to
3%.

3.5 Identifying an Alternative Decarbonization Pathway
Robust to Future Climate Realizations

Our prior results indicate a subset of potential climate realizations drive sig-
nificant risk of resource adequacy failures across decarbonization pathways
(Figure 3). We identify the ensemble member that drives the largest resource
adequacy failures (quantified as the sum of minimum annual SACs) across
decarbonization pathways in California (our largest load region) in 2040,
namely r19i1231, then rerun our capacity expansion model using that ensemble
member’s meteorology. This ensemble member was not captured in our initial
sampling procedure, in which we selected five ensemble members that spanned
the warming at mid-century represented by the ensembles in the CESM2-LE
dataset (Figure B.10). Rather, r19i1231 features a compound extreme event in
2040 of low hydropower and wind generation potential and high air tempera-
tures, the latter of which drive elevated electricity demand and low available
thermal capacity (Figure A.10). Capturing unexpected extreme climate real-
izations, such as r19i1231, is a key motivator for our framework, as identifying
extremes a priori is difficult given complex interactions within power systems.

Our new decarbonization pathway generated with the r19i1231 climate
ensemble member invests in more solar and NGCC capacity and in less wind
capacity than other pathways (Figure 6a). Figure 6b compares the resource
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Fig. 5: Interconnect-wide minimum annual SAC Sum of minimum annual SAC
values for our five subregions in 2040 versus cumulative (2023-2040) total (fixed
plus operating) costs for each decarbonization pathway. Minimum annual SAC
values equal the sum of non-synchronous subregional minimum SAC values.
Each decarbonization pathway is depicted with a cross; the dot at the center
of each cross indicates the mean total SAC and mean total cost for that decar-
bonization pathway across all 100 climate ensemble members; the horizontal
arm of each cross ranges from the minimum to maximum total cost for that
decarbonization pathway across all 100 climate ensemble members; and the
vertical arm of each cross ranges from the minimum to maximum total SACs
for that decarbonization pathway across all 100 climate ensemble members. For
context, total non-synchronous peak demand across the five subregions equals
roughly 200 GWh (although peak demand varies across climate realizations).
A negative minimum annual SAC value indicates one or more subregions in
that pathway experiences a supply shortfall under at least one future climate
realization.

adequacy of the decarbonization pathway generated with this new ensem-
ble member versus our original decarbonization pathways. Our new pathway
exhibits significantly higher minimum SAC values, indicating less vulnerabil-
ity to resource adequacy failures. In fact, the new pathway does not experience
any resource adequacy failures across any climate realizations in 2040 in any
region (i.e., no ENS or negative SAC values), and has a minimum annual
SAC of 0-3 GWh in California across climate realizations. The newly gener-
ated pathway also meets CO2 emission caps in all but three potential climate
realizations (Figure 6c). Figure 6d compares the trade-off between resource
adequacy and system costs for the new versus prior pathways. The new path-
way has significantly better resource adequacy than prior pathways, but at
greater total costs. Specifically, the new pathway incurs, on average, roughly
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$10 billion greater total costs between 2023 and 2040 compared to the next
costliest pathway.

Fig. 6: (a) Difference in installed capacity by generator type across Western
Interconnect in 2040 between the decarbonizatoin pathway generated using the
r19i1231 ensemble member and each of the other driving ensemble members.
CC stands for natural gas combined cycle, CCCCS for CC with carbon capture
and sequestration, and PV for photovoltaic. (b) Same structure as Figure 3,
but includes the decarbonization pathway generated using the r19i1231 ensem-
ble member (bolded at top) and only includes the two largest subregions by
demand for conciseness. (c) Same structure as left panel of Figure 3.3, but
includes the decarbonization pathway generated using the r19i1231 ensemble
member (bolded at top). (d) Same structure as left panel of Figure 5, but
includes the decarbonization pathway generated using the r19i1231 ensemble
member (shown as cross centered on square instead of circle).

4 Discussion

Existing research and system planning practices lack decision support frame-
works for identifying investment alternatives that are robust to climate-related
uncertainty. We construct such an analytical framework by integrating plan-
ning and operational power system models with a large climate ensemble, then
use our framework to identify the vulnerabilities, trade-offs, and robustness
of alternative decarbonization pathways for the Western U.S. power system
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in 2040. We began our analysis with five alternative pathways to 60% decar-
bonization of the power system. All of these pathways exhibited modest to
significant resource adequacy failures under potential climate realizations. But
by choosing one pathway over others, significantly better resource adequacy
outcomes can be achieved at little additional cost. Even this more robust
pathway, though, suffered resource adequacy losses under future climate real-
izations. By identifying a particularly problematic future climate realization
for future resource adequacy and using it to create another alternative decar-
bonization pathway, we identified a pathway robust to, or that experienced
no resource adequacy failures under, all examined future climate realizations.
This robustness is achieved through an increase of roughly $10 billion (or 5%)
in total costs, posing a trade-off to decision-makers.

Our analysis quantifies the resource adequacy of alternative decarboniza-
tion pathways against an unprecedented range of near-term climate variability.
Capturing this range of climate variability was possible through the use of the
LENS2 dataset, but came at the cost of climate data with poor spatial and tem-
poral resolution. Energy system modeling needs and available climate dataset
characteristics are often misaligned [25], and conducting detailed downscaling
of all LENS2 ensemble members is computationally prohibitive. However, our
analytical framework can guide high resolution downscaling of large climate
ensembles like LENS2 for energy system applications, a key need for energy
system modelers. Specifically, our framework can identify ensemble members,
periods of interest, and/or climate conditions that pose the greatest threat
to alternative future power systems. Threatening conditions are themselves a
function of investment decisions in power systems, so identifying those con-
ditions for a broad range of alternatives, as our framework enables, is crucial
to fully characterize vulnerabilities and robustness. In our case, one ensem-
ble member (r19i1231) resulted in resource adequacy failures across nearly all
studied decarbonization targets due to the compounding effects of low wind
and hydropower generation potential and high air temperatures. Identified
members, periods, or climate conditions of concern can be selectively down-
scaled and fed back into planning or resource adequacy modeling, maximizing
the value of high resolution downscaled data. This process requires bottom-up
trans-disciplinary collaboration between energy system and climate modellers
[25]. In using climate data with poor spatial (100 by 100 km) and tempo-
ral (daily) resolution, our analysis is unable to capture the diurnal pattern of
solar power, which could bias our investment decisions and resource adequacy
analyses in favor of solar power.

Additional opportunities for extending our research exist. We do not con-
sider changes in demand due to adoption of new technologies, e.g. heat pumps
to electrify space heating or space cooling in response to increasing tempera-
tures. In winter peaking regions like the Northwest, electrified heating through
heat pumps can lead to higher demand in the winter months, introducing
interactions between decarbonization and climate change that could affect
our SAC calculations. In the Northwest and other regions with historically
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low space cooling penetrations, adoption of space cooling could also interact
with increasing extreme heat to exacerbate summer peak demands. Incorpo-
rating the effect of such demand-side changes in our models will allow us to
make accurate assessment of future fleets’ robustness [9]. Future research could
also extend our framework to incorporate additional robustness concepts. For
instance, in practice utilities design future systems that meet certain resource
adequacy thresholds, e.g. the 1-in-10 standard, which could be captured using
a satisficing metric.

Our framework provides a practical way for real-world system planners and
utilities to better account for climate-related uncertainty, whether planning
for individual or multiple regions. Many planners and utilities use third-party
software packages, e.g. PLEXOS or RESOLVE, to make long-term plans. Mod-
ifying the underlying mathematical formulation used in these packages, e.g.,
from a deterministic to stochastic or robust optimization, is challenging for end
users. Conversely, our framework only requires changes to model inputs and
additional processing of model results, a more feasible undertaking. Planners
could obtain a range of climate realizations of interest, ideally in collaboration
with climate scientists, then stress test their alternative plans against those
climate realizations to identify system vulnerabilities and challenging climate
realizations. Challenging climate realizations can then be downscaled and used
in more detailed analyses, saving time and effort when compared to down-
scaling all realizations. Planners could further feed generated insights back
into their pipeline, as we demonstrated above, to identify potentially more
robust investment plans. Regulators could also require utilities to engage in
stress testing during Integrated Resource Plan (IRP) proceedings to under-
stand trade-offs between improved resource adequacy and greater consumer
costs. Through practical applications like these, our framework can help prac-
titioners identify future power systems that are robust to climate change and
that simultaneously advance reliable, affordable, and clean objectives.
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Meteorological data used in this study is available through [60]. Code
for the CEM, SAC calculations, and analysis notebook used to create
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WesternUSRDM. Processed meteorological fields and data used in the anal-
ysis will be archived in Zenodo. Analysis data is available temporarily at
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Supplementary Information for Identifying
Robust Energy Decarbonization Pathways in the
Presence of Deep Climate Uncertainty

A Results

Fig. A.1: Installed capacity of each generator type across each subregion in
WECC in the initial fleet (2022) and in 2040. The range bars extend from the
mininum to maximum capacity investment across our five initial decarboniza-
tion pathways. CC = natural gas combined cycle; HD = hydropower; and NU
= nuclear.
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Fig. A.2: Same structure as Figure 3, but each color bar shows total annual
energy not served (ENS) rather than minimum annual SAC.
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Fig. A.3: Pair plots of weather-driven energy system variables, namely daily
electricity demand, solar and wind capacity factors (CF), and hydropower
(HD) generation, in California (or our CAMx subregion) in 2040 on the day
with the highest annual energy not served. Each plot contains 500 points, which
correspond to each of our five initial decarbonization pathways run against
each of our 100 ensemble members. Colors indicate ENS magnitude.
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Fig. A.4: Same as figure A.3 but for the Desert Southwest.
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Fig. A.5: Same as figure A.3 but for NWPP NE subregion.



1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

Springer Nature 2021 LATEX template

RDM decarbonization 31

Fig. A.6: Same as figure A.3 but for NWPP NW subregion.



1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Springer Nature 2021 LATEX template

32 RDM decarbonization

Fig. A.7: Same as figure A.3 but for NWPP Central subregion.
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Fig. A.8: For our five initial decarbonization pathways evaluated against
all ensemble members for the whole WECC region, this shows pair plots of
weather-driven energy system variables: annual average solar capacity fac-
tors (CFs), annual average wind CFs, total annual demand, and total annual
hydroelectric generation. Points are colored by annual CO2 emission fractions
normalized against the 40% emissions target. Emissions tend to exceed the
intended cap in ensemble members with low hydropower generation and coin-
ciding low wind and solar resources.
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Fig. A.9: Same as figure 5 but the y-axis represents resource adequacy out-
comes for each individual region.
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Fig. A.10: Pair plots of weather-driven energy system variables in the five
initial decarbonization pathways. Variables are annual average solar and wind
capacity factors, total annual daily demand, total annual daily hydroelectric
generation, and total annual energy not served. Data is shown for California
only, the largest demand region. Yellow dots show outcomes when each path-
way is run under the r19i1231p1f2 ensemble member, while blue dots show
outcomes while each pathway is run under each of the other 99 ensemble mem-
bers, thereby illustrating differences between r19i1231p1f2 and other members
(high demand, low hydropower, and low wind).
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B Climate Data

Variables obtained from CESM2-LE and their features are shown in table 1
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B.1 Bias Correction

B.1.1 Surface Temperature

1. Get ensemble mean temperature mean over geography of interest
2. Compare with mean of ERA5 temperature regridded to the LENS2 grid

over same geography
3. Calculate bias correction factor as δT = yf − yra
4. Calculate bias corrected temperature as yf,corr = yf − δT

Fig. B.1: Comparison of LENS2 ensemble mean temperature and ERA5 tem-
perature for different methods of averaging.

B.2 Capacity factors

We derive solar capacity factors from surface downwelling shortwave flux data
for a EFG-Polycrystalline silicon photovoltaic module using the formulation
described by Jerez et. al. [69] [See SI section 1.1]. We calculate wind capacity
factors from the 10m wind speed date using the formulation described by
Karnauskas et. al. [19] and the composite 1.5 MW IEC class III turbine from
the System Advisor Model [70].

B.2.1 Solar

We derive daily solar capacity factors for a EFG-Polycrystalline silicon
photovoltaic module as[? ]:

CF t
pv = P t

R

FSDSd

RSDSSTC
(1)
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where RSDSt represents surface downwelling shortwave flux in air [Wm−2]
where the superscript d indexes the day. All the metorological variables are
discreet in time and space (at the dataset resolution), and the index d is
dropped hereafter for conciseness. In eq.1, RSDSSTC refers to FSDS at stan-
dard test conditions and is equal to 1000Wm−2, and P t

R is the performance
ratio calculated using

PR = 1 + γ[Tcell − TSTC ] (2)

Tcell = c1 + c2TREFHT + c3FSDS + c4SWS (3)

where Tcell is the PV cell temperature, TAS is surface air temperature (2m
temperature and SWS is surface wind speed. In eq.2, γ = −0.005°C−1 and
TSTC = 25°C. In eq.3, c1 = 4.3°C, c2 = 0.943, c3 = 0.028°Cm2W−1, and
c4 = −1.528°Csm−1 [71].

B.2.2 Wind

We calculate wind capacity factors using the formulation described in [19]
for the composite 1.5 MW IEC class III turbine with power curves from the
System Advisor Model (SAM) [70] as:

CF d
wind = p(W d

100) (4)

where p is a function describing the power curve andW d
100 is the daily corrected

100m wind speed. The correction accounts for air density and humidity related
effects on the wind turbine performance and is carried out as:

W100 = W10

(
100m

10m

)1/7

(5)

W100 = W100

( ρm
1.225

)1/3
(6)

ρm = ρd

(
1 +QREFHT

1 + 1.609×HUSS

)
(7)

ρd =
PS

R× (T + 273.15)
(8)

Eqs.5 and 6 scales the 10m wind speed to 100m and correct for air density as
this affects the force exerted on the turbine blades, where ρm is the humidity
corrected air density, which is in turn derived from the surface specific humidity
(HUSS) as shown in eq.7. ρd is the dry air density which is derived using the
ideal gas law from surface pressure [units-Pa](PS) and surface temperature
(T ) as shown in eq.8, where R = 287.058Jkg−1K−1 is the gas constant.

We estimate wind generation for all locations across WECC assuming a
class-III wind turbine. The power curve from SAM is provided as the power
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output at discrete wind speeds (figure B.2), and we convert this into a con-
tinuous function through linear interpolation. We include the discrete power
curve in this SI.

Fig. B.2: Power curve for 1.5 MW IEC class III turbine

B.3 Hydroelectricity generation

We obtain monthly hydroelectric generation forecasts using a linear regres-
sion model which predicts hydro electric generation as a function of runoff.
We train the regression against cleaned plant level hydroelectric generation
from the RectifHyd dataset [66] and river run-off from the ERA5-land dataset.
To predict the hydro generation for each ensemble member we use the runoff
data from the LENS2 dataset. Owing to the coarse resolution of the LENS2
data, and computational costs to obtain river run and reservoir flows, we build
our regression models for individual ”drought regions”. These drought regions
represent eight hydropower climatic regions for the western US, and deter-
mined using clustering techniques based on similarity of climatic conditions
and reservoir characteristics [65].

We carry out the hydroelectric generation forecasting with the following
steps:

1. ERA5 representation of runoff is daily accumulations at 00 hours in m/day
and averaged over month, cesm is daily mean at mm/day averaged over
month, so we reconcile these to the same units.

2. There is a bias between LENS2 and ERA5-Land datasets, so we bias cor-
rect LENS2 data ensemble mean to match reanalysis data for the period
1980-2020 using a scaling factor. Figure B.6 shows the bias correction fac-
tors for each drought region. The range in the figure represents the bias
correction factors if we corrected each ensemble member individually rather
than correcting the ensemble mean.
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3. We then train our regression models to predict annual generation (for a
hydrological year), using the observed hydro generation data and ERA5
surface run off. We predict annual generation based on LENS2 data and
use the monthly shapes in figure B.7 to get monthly generation.

4. Figures B.8 and B.9 show predicted hydroelectric generation from all ensem-
bles at the drought regional level and from 1 ensemble for the WECC
subregions respectively.

Fig. B.3: Drought regions used in the RectifHyd dataset

Fig. B.4: Mapping of hydropower plants in WECC to the drought regions
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Fig. B.5: Mapping of CESM grid cells to the drought regions

Fig. B.6: Bias correction factors for the drought regions.
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Fig. B.7: Annual to monthly disaggregation shapes
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Fig. B.8: Comparison of annual hydroelectric generation from all ensembles
against observations



2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052

Springer Nature 2021 LATEX template

RDM decarbonization 45

Fig. B.9: WECC subregional hydroelectric generation for the r4i1061p1f1
ensemble

B.3.1 Driving Ensemble Parameters

Fig. B.10: Difference between 2035-2065 and 1985-2015 climatology of surface
temperature and relative humidity for the 100 CESM2-LE ensemble mem-
bers. The stars show ∆T and ∆RH the ensemble members chosen for capacity
expansion runs. Refer table 2 for information about the selected ensemble
members.
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Index
LENS2

member ID
∆T (◦C) ∆RH

1 r12i1301p1f2 1.70 0.10
2 r10i1181p1f1 2.03 -0.22
3 r9i1301p1f1 2.13 -0.80
4 r10i1191p1f2 2.50 -1.17
5 r5i1231p1f1 2.59 -1.79

Table 2: ∆T, ∆RH, and ensemble ID of the members chosen for expansion
planning. Index corresponds to star labels in Figure B.10.

Sub-region Balancing Authorities aggregated to find demand
CAMX CISO, BANC, TIDC, LDWP
Desert Southwest IID, AZPS, SRP, EPE, PNM, TEPC, WALC
NWPP Central NEVP, PACE, IPCO, PSCO
NWPP NE WACM, NWMT, WAUW, PACE
NWPP NW PSEI, DOPD, CHPD, AVA, TPWR, GCPD, BPAT, PGE, PACW, SCL

Table 3: Sub-region – balancing authority mapping to obtain aggregate
demand

C Demand Forecasting

We derive daily subregional demand for each ensemble member using a piece-
wise linear regression (PLR) model [15]. The model predicts daily demand
from subregional averaged daily surface temperature. We train the model with
daily demand data, which is obtained by processing observed demand [72],
and observed daily temperatures from ERA5. In the regression formulation
we include fixed effects based on day of the week and the season. We obtain
temperature bins to apply the piecewise model by splitting the subregional
temperatures into 6 bins containing same number of datapoints. Because the
subregions experience different temperature, we have different bins for each
subregion.

C.1 Regional Demand for Electricity

The sub-regional loads are constructed by aggregating loads in smaller
balancing authorities located within their boundaries [Table 3].
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Subregion
Coefficient corresponding to

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6
CAMX -73.38 -99.82 305.46 513.98 1038.17 1731.93
Desert Southwest -169.99 -0.18 170.67 439.61 624.10 497.94
NWPP Central -115.00 -158.59 -88.00 164.17 397.05 523.58
NWPP NE -36.83 -51.61 -63.73 -6.91 97.34 154.42
NWPP NW -406.10 -448.34 -460.85 -163.03 179.54 352.19

Table 5: Coefficients of corresponding segments from table 4
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Fig. C.1: Piecewise linear regression results overlaid with observed values for
residual load versus temperature in each subregion. Residual load isolates the
temperature-dependent portion of load.
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D Capacity Deratings and
Temperature-Dependent Forced Outage
Rates of Fossil-Based Thermal Power Plants

Fossil-based thermal power plants are vulnerable to capacity deratings, or
reductions in available generating capacity. We estimate deratings using exist-
ing bottom-up relationships for steam turbine and combined cycle (CC) plants
with recirculating or dry cooling and for combustion turbines. Deratings for
plants with once through cooling are driven by water intake conditions (e.g.,
river temperatures) and regulations, so requires detailed hydrological model-
ing outside of our analytic scope. We approximate deratings of coal and CC
facilities with carbon capture and sequestration (CCS) to be the same as coal
and CC facilities without CCS. Deratings are calculated following the methods
following Craig et al. (2020), which sources a bottom-up derating estimate for
combustion turbines from Bartos and Chester (2015) and a statistical model
of deratings at coal and gas STs and CCs from Loew et al. (2018). In these
relationships, CT deratings are a function of surface air temperatures; STs and
CCs with recirculating cooling (RC) are a function of surface air temperatures
and relative humidity; and STs and CCs with dry cooling (DC) are a function
of surface air temperatures and surface air pressure. RC and DC facilities have
varying designs, which in turn have varying vulnerabilities to thermal derat-
ings. Data on RC and DC designs is not publicly available, so we assume RC
and DC designs that are moderately resilient against deratings. Specifically,
we assume a RC design of inlet and outlet cooling water temperatures of 75
and 95 degrees F, respectively, and a DC design with an initial temperature
difference of 45 degrees F. We obtain cooling types by power plant from EIA
Form 860.

We calculate temperature-dependent forced outage rates for thermal power
plants using the best available plant-type-specific relationships from existing
literature [67].
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E Capacity Expansion Model

The capacity expansion (CE) model optimizes new capacity investments, oper-
ations of new and existing units, and inter-regional electricity transfers by
minimizing total system costs subject to system and unit-level constraints.
Total system costs equal the sum of the cost of electricity generation of existing
and new units and the cost of new capacity investments. Electricity genera-
tion costs equal the sum of fixed operations and maintenance (O&M) costs
and variable electricity generation costs, which include fuel costs and variable
O&M costs. The model runs from 2023 to 2040 in 2-year time steps. In each
model run, the CE model can build natural gas combined cycle (NGCC), wind,
and solar generators, and can build coal or NGCC with carbon capture and
sequestration (CCS) beginning in 2031 given the current immature state of
the technology. We obtain overnight capital costs and fixed and variable oper-
ation and maintenance (O&M) costs for each time step from NREL’s Annual
Technology Baseline (ATB) moderate technology development scenario [73].

The CEM model divides WECC into five regions; inter-regional transmis-
sion and capacity investments are optimized between regions, and supply and
demand are balanced within each region (accounting for imports and exports).

To reflect ongoing scale up of wind and solar investment potential, we
include a WECC-wide limit on wind and solar investments in each time step.
Annual limits begin in the first model run (2023-2024) at 5.2 and 6.8 GW for
wind and solar, respectively, or double the maximum annual capacity addi-
tions in recent years (2020-2022) since our model runs in 2-year time steps.
Maximum potential wind and solar investments grow through 2040 at a com-
pounding annual growth rate of 0.3. In addition to WECC-wide investment
limits on wind and solar, we capture local limits on capacity investments
following methods outlined by Wu et al. [74]. In general, we exclude devel-
opable area on the basis of environmental, techno-economic, land use, and legal
criteria. Exclusions include Bureau of Land Management (BLM) exclusions;
United States Geologic Service protected areas; airports; lakes; mines; military
areas; census urban zones; flood zones; high slopes; and high population den-
sities. After accounting for exclusions, we sum available area for wind or solar
deployment by CESM2 grid cell, convert area to installed capacity using wind
and solar densities of 0.9 and 5.7 W per square meter [75], respectively, and
optimize wind and solar investments at the grid cell level.

E.1 Functional Forms

E.1.1 Parameters and Variables
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Parameter Definition Unit

PMAX
i Maximum power rating of existing unit i MW

PMAX
c Maximum power rating of new unit c MW

PMAX
l Maximum transmission capacity of line l MW

FOMc Fixed O&M cost of new unit c $/MW/year

OCCc Overnight capital cost of new unit c $/MW

OCCl Overnight capital cost of transmission expansion along line l $/MW

CRFc Capital recovery factor of new unit c $/MW

CRFl Capital recovery factor of new transmission line l $/MW

OCc Operational cost of new unit c $/MWh

V OMc Variable O&M cost of new unit c $/MWh

V OMi Variable O&M cost of existing unit i $/MWh

OCi Operational cost of existing unit i $/MWh

OCc Operational cost of new unit c $/MWh

FCc Fuel cost of new unit c $/MMBtu

FCi Fuel cost of existing unit i $/MMBtu

HRc Heat rate of new unit c MMBtu/MWh

HRi Heat rate of existing unit i MMBtu/MWh

ERCO2
i CO2 emissions rate of existing unit i ton/MMBtu

ERCO2
c CO2 emissions rate of new unit c ton/MMBtu

R Discount rate = 0.07 –

LTc Life time of new units c Years

NMAX
cr

Maximum capacity of new wind or solar units c built MW

PWECC,MAX
cr

Maximum number of total renewable capacity cr built WECC-wide MW

Dz,t Total load (or electricity demand) in region z at time t MWh

Dt Total load (or electricity demand) across regions at time t MWh

Table 7: List of Parameters

Parameter Definition Unit

PMAX,WIND
t,z Maximum aggregate wind profile in region z at time t MW

PMAX,SOLAR
t,z Maximum aggregate solar profile in region z at time t MW

Hb,z Maximum hydropower generation in region z and month b MWh

FORi,t Forced outage rate of existing unit i at time t –

DRith,t Capacity derate of existing thermal CT, CC, or coal plants ith at time t –

DRcth,t Capacity derate of new thermal CC or coal plants cth at time t –

FORRE
t Forced outage rate of existing wind and solar units at time t –

FORc,t Forced outage rate of new unit c at time t –

EMAX
CO2

WECC-wide carbon dioxide emissions cap tons

CFcr,t Capacity factor of new renewable unit cr at time t –

RLi Maximum ramp rate of existing unit i MW

RLc Maximum ramp rate of new unit c MW

ν Transmission losses per unit of electricity transferred between regions %

Table 7: List of Parameters (Continued)
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Set Definition Index Note

C Set of potential new units c –

Cz Set of potential new units in region z cz Cz ∈ C
Cr Set of potential new renewable units cr Cr ∈ C
Cth Set of potential new coal or NGCC thermal units cth Cth ∈ C
I Set of existing units i –

Iz Set of existing units in region z iz Iz ∈ I
Ir Set of existing renewable units ir Ir ∈ I
Ith Set of existing CT, CC, or coal thermal units ith Ith ∈ I
Iw Set of existing wind units iw Iw ∈ I
Iwz Set of existing wind units in region z iwz Iwz ∈ Iw
Io Set of existing solar units io Io ∈ I
Ioz Set of existing solar units in region z ioz Ioz ∈ Io
L Set of transmission lines l –

LOUT
z Set of transmission lines flowing out of region z lOUT

z LOUT
z ∈ L

LIN
z Set of transmission lines flowing into region z lINz LIN

z ∈ L
B Set of months b –

T Set of days t –

Tp Set of peak demand day tp Tp ∈ T
Z Set of regions in WECC z –

Table 8: List of Sets

Variable Definition Unit

nc Number of new units built of type c Positive number

nl Total new transmission line capacity investments in line l MW

pi,t Electricity generation from existing unit i at time t MWh

pc,t Electricity generation from new unit c at time t MWh

fl,t Total electricity flow in line l at time t MWh

Table 9: List of Variables

E.2 Objective Function

The CE model’s objective function minimizes total annual fixed plus variable
costs, where fixed costs capture investment costs in new transmission and
electricity generators, and variable costs capture operational costs of new and
existing generators:

TCCE =

[∑
c

nc × PMAX
c × (FOMc +OCCc × CRFc)

]

+

[∑
l

nl ×OCCl × CRFl

]
+

[∑
t

(∑
c

pc,t ×OCc +
∑
i

pi,t ×OCi

)]
,
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∀i ∈ I, c ∈ C, l ∈ L (9)

where c indexes potential new units; t indexes time intervals (days); i indexes
existing units; l indexes potential new transmission lines; nc is number of new
unit investments; nl is total new transmission line capacity investments in line
l (MW); PMAX is maximum capacity of unit (MW); FOM is fixed operation
and maintenance (O&M) costs of units ($/MW/year); OCC is overnight cap-
ital cost of new investments ($/MW); CRF is capital recovery factor; pc is
electricity generation from new unit c (MWh); pi is electricity generation from
existing unit i (MWh); and OC is operational costs of new or existing units
($/MWh). OC is defined for new and existing generators as:

OCi = V OMi +HRi × FCi ∀i ∈ I, (10a)

OCc = V OMc +HRc × FCc ∀c ∈ C (10b)

where V OM is variable O&M costs ($/MWh), HR is heat rate (MMB-
tu/MWh), and FC is fuel cost ($/MMBtu). CRFc is defined as:

CRFc =
R

1− 1

(1 +R)
LTc

∀c ∈ C, (11)

where R is discount rate and LT is plant lifetime (years).

E.3 System-level Constraints

The CE model requires total adjusted capacity to meet peak annual demand
on a WECC-wide basis:

Dt ≤

∑
cth∈Cth

PMAX
cth

× (1− FORcth,t)× (1−DRcth,t)× ncth

+
∑

cr∈Cr

PMAX
cr × (1− FORcr,t)× ncr × CFcr,t

+
∑

i∈(I−IW−IO−ITH)

(1− FORi,t)× PMAX
i

+
∑

ith∈ITH

(1− FORith,t)× (1−DRith,t)× PMAX
ith

+
∑
z

(
PMAX,SOLAR
z,t + PMAX,WIND

z,t

)
× (1− FORRE

t ),

∀t ∈ Tp

(12)

where cth and cr index new thermal and renewable plant types, respec-
tively; iw and io index existing wind and solar generators, respectively;
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z indexes regions; FOR is forced outage rate; CF is capacity factor;
PMAX,SOLAR is maximum regional generation by existing solar generators
(MWh); PMAX,WIND is maximum regional generation by existing wind gener-
ators (MWh); and Tp indicates the annual peak demand day. Adjusted capacity
here accounts for temperature-dependent forced outage rates of generators
[Table 6] and daily capacity factors for wind and solar facilities. Note that this
PRM is enforced across all of WECC rather than on a region-by-region basis.

The CE model also requires supply balance demand at each time step:

Dz,t +
∑

lOUT
z ∈LOUT

z

flOUT
z ,t ≤

∑
iz∈Iz

piz,t +
∑

cz∈Cz

pcz,t

+
∑

lINz ∈LIN
z

flINz ,t × ν, ∀z ∈ Z, t ∈ T,
(13)

where z indexes zones, l indexes transmission lines, iz indexes existing units
in region z, cz indexes new units in region z, lINz indexes lines flowing out of
region z, lOUT

z indexes transmission lines flowing out of region z, ν indicates
losses for each unit of electricity imported into a region (assumed to be 5%),
and f is electricity flows along transmission lines.

The total electricity flow through a transmission line (fl,t) cannot exceed
the line’s initial transmission capacity (PMAX

l ) plus new capacity investments
(nl):

fl,t ≤ PMAX
l + nl, ∀l ∈ L, t ∈ T, (14)

where l indexes transmission lines, and fl,t is total electricity flow in line l at
time t (MWh).

To examine power systems that meet alternative decarbonization targets,
we enforce four different CO2 emission caps (EMAX

CO2
on WECC-wide emissions:

EMAX
CO2

≥

[∑
t

(∑
i

pi,t ×HRi × ERCO2
i +

∑
c

pc,t ×HRc × ERCO2
c

)]
,

∀t ∈ T, ∀i ∈ I, ∀c ∈ C (15)

where ERCO2 is CO2 emission rate (ton/MMBtu).
As detailed above, we enforce a WECC-wide cap on wind and solar

investments (PWECC,MAX
cr ) (MW) to reflect scaling up of both industries:

∑
cr

ncr × PMAX
cr ≤ PWECC,MAX

cr , ∀cr ∈ Cr (16)

where ncr equals investment in new wind or solar plants.
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E.4 Unit-level Constraints

E.4.1 Investment constraints

As explained above, the CE model places an upper bound on wind and solar
investments by grid cell based on the area of each grid cell; restrictions on devel-
opment based on technoeconomic, legal, environmental, and land-use criteria;
and the energy density of wind and solar:

0 ≤ ncr × PMAX
cr ≤ NMAX

cr , ∀cr ∈ Cr (17)

where ncr equals investment in new wind or solar plants and NMAX
cr equals the

maximum investment in new wind or solar plants by grid cell. Existing wind
and solar capacities are subtracted from the grid cell’s maximum capacity in
calculating NMAX

cr .

E.4.2 Generation constraints

For existing generators, electricity generation is limited by the generators’
capacities:

0 ≤ pi,t ≤ PMAX
i , ∀t ∈ T, i ∈ I (18)

Thermal plants are vulnerable to deratings at certain ambient air tem-
peratures. We account for deratings of combustion turbines, NGCCs, and
coal-fired power plants across space and time (Section SI.D) and limit their
daily generation to their derated capacity as follows:

pith,t ≤ DRith,t × PMAX
ith

, ∀t ∈ T, ith ∈ I≈≂pcth,t ≤ ncth ×DRcth,t × PMAX
cth

, ∀t ∈ T, cth ∈ C≈≂
(19a)

Combined electricity generation by existing wind and solar generators is
limited to aggregate wind and solar generation profiles:

∑
iwz∈Iwz

piwz ,t
≤ PMAX,WIND

z,t , ∀t ∈ T, z ∈ Z, (20a)

∑
ioz∈Ioz

pioz ,t ≤ PMAX,SOLAR
z,t , ∀t ∈ T, z ∈ Z, (20b)

New generators’ electricity generation cannot exceed their new capacity
investments:

0 ≤ pc,t ≤ nc × PMAX
c , ∀t ∈ T, c ∈ C (21)
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Electricity generation by new renewable generators is also constrained by
site-specific capacity factor timeseries:

pcr,t ≤ ncr × PMAX
cr × CFcr,t, ∀t ∈ T, cr ∈ Cr (22)

Hydropower generation is constrained based on observed data for each of
our weather years. Since we ignore transmission constraints within each of
our five regions, we aggregate hydropower capacity by region, then limit total
hydropower generation by month (or time block):∑

tb∈Tb,ihz∈Ihz

pihz ,tb
≤ Hb,z,∀z ∈ Z, b ∈ B (23)

where ihz
indexes all hydropower units in region z and Hb,z equals maximum

total hydropower generation in month b and region z [??].
The CE model places an upper bound on upwards changes in electricity

generation from one time period to the next, i.e. in upward ramps, for new
and existing units:

pi,tb − pi,tb−1 ≤ RLi, ∀tb > 1, i ∈ I (24a)

pc,tb − pc,tb−1 ≤ nc × PMAX
c ×RLc ∀tb > 1, c ∈ C (24b)

where RL equals the ramp limit. We only constrain upwards ramps for two
reasons: (1) downward ramps can be more easily achieved through curtailment
of renewables than upwards ramps and (2) for computational tractability.

E.5 Data

In this section, we discuss the data and intermediate steps to calculate the
parameters that are used in the model.

E.5.1 Regional Demand for Electricity

The sub-regional loads are constructed by aggregating loads in smaller
balancing authorities located within their boundaries per the following table.

E.5.2 Generator Fleet

Initial Generator Fleet

To construct our 2022 initial representative existing generator fleet, we begin
with unit-level data on active existing units from The National Electric Energy
Data System (NEEDS) dataset version 6 (updated in February 2023) [? ].
Because NEEDS lacks several parameters needed in our CE model, we merge
the NEEDS dataset with EIA860 dataset [? ] and add carbon dioxide (CO2)
emission rates from the the U.S. Energy Information Administration (EIA)’s
Carbon Dioxide Emissions Coefficients [? ], fuel prices from EIA’s Annual
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Sub-region
CC
gas

OC
gas

Hydro Nuclear Coal Solar Wind Other

CAMX 20641 10825 10147 0 17 10644 5764 4010
Desert Southwest 11256 4855 3840 3937 5333 2303 1488 363
NWPP Central 10486 5053 954 0 6693 3128 3636 1045
NWPP NE 94 465 3493 0 6562 40 2906 23
NWPP NW 6619 1669 32091 1180 0 356 6568 557

Table 10: Initial generator fleet capacity of each generator type (in MW)
across the subregions. CC indicates combined cycle; OC open cycle; and coal
plants are steam turbine plants.

Energy Outlook 2023, Table 3. Energy Prices by Sector and Source [? ], and
variable operation and maintenance (O&M) costs from [73]. We isolate gen-
erators within WECC, our study region, using shape files of balancing areas
within WECC from NREL’s ReEDS model [76]. Our initial generator fleet is
described in the table 10. The other type of generators in the table below
include geothermal, different types of waste, biomass, and other small fossil
generators, which are all modeled as dispatchable capacity in the CEM and
RAM.

Generator Fleet Compression

Because the existing generation fleet in WECC is large with over 4,500 units,
we combine (or aggregate) existing small generators into larger generators for
computational tractability. We aggregate generators within the same region
using two steps and several criteria. First, for each fuel type and plant type
with zero marginal costs, we aggregate all generators into a single genera-
tor by region. Zero marginal cost generators include all geothermal, wind,
solar, landfill gas, municipal solid waste, biomass, and non-fossil waste gen-
erators. Second, for each fuel type and plant type with non-zero marginal
costs, we aggregate generators based on age and heat rate to preserve het-
erogeneity in operational costs. These non-zero marginal cost units include
distillate fuel oil, natural gas combined cycle, natural gas combustion tur-
bine, residual fuel oil, and coal (including bituminous, sub-bituminous, and
lignite) generators. Specifically, by region, plant type, and fuel type, we divide
generators into 4 heat rate blocks, then aggregate generators together within
each heat rate block by decade between 1975 and 2026. We aggregate gener-
ators up to 200 MW in size in this manner, and create combined generators
of up to 10,000 MW. These size thresholds significantly reduce the size of
the generator fleet while still individually modeling mid- to large-sized power
plants. Heat rates and CO2 emission rates of the aggregated generators equal
the capacity-weighted heat rates and CO2 emission rates of their constituent
generators.
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Transmission Capacity between Total Capacity (GW) Expansion Cost (1000$/MW)
NWPP-NW and NWPP-NE 12.3 474
NWPP-NW and CAMX 7.1 1,018
NWPP-NW and NWPP-Central 1.5 569
NWPP-NE and NWPP-Central 6.0 431
CAMX and Desert Southwest 3.0 1,070
CAMX and NWPP-Central 4.6 816
Desert Southwest and NWPP-Central 5.6 348

Table 11: Transmission Networks within WECC

E.5.3 System Topology

Our resource adequacy (RA) model uses the five regions that WECC uses
to quantify resource adequacy in WECC [59]: NWPP NW, NWPP NE,
CAMX, Desert Southwest, and NWPP Central [see figure E.1]. To align regions
between the CE and RA models, we model these same five regions in our CE
model.

Within each of these regions, we ignore transmission constraints. Between
regions, we enforce transmission constraints. Given the lack of data regarding
transmission constraints between our WECC resource adequacy regions, we
estimate inter-regional transmission constraints using data from the National
Renewable Energy Laboratory (NREL) Regional Energy Deployment System
(ReEDS) model. ReEDS provides transmission constraints between 35 bal-
ancing areas across WECC. We assign each balancing area to a region using
spatial overlays, then set transmission constraints between each pair of regions
as the sum of transmission constraints between each pair of balancing areas
within each region. Using this method, we identify seven inter-regional, bi-
directional transmission constraints. For each of these seven inter-regional
transmission constraints, we limit daily inter-regional electricity transfers to
an upper capacity bound.

In addition to enforcing existing transmission constraints, the CE model
can also invest in new transmission capacity between each of the seven inter-
regional transmission interfaces identified above. Similar to other macro-scale
planning models [77], we assume costs scale linearly with new transmission
capacity, allowing us to maintain a computationally tractable linear program
(LP). Per-MW costs of transmission expansion equal the distance (in miles)
between the two centroids of interconnected regions times the per MW-mile
cost of each bi-directional transmission line. We estimate this cost as the
median of costs between each pair of balancing authorities between regions,
which is taken from NREL’s ReEDS Model’s open access github [76]. Table
11 depicts all possible combinations of aggregate links between our five load
regions and their respective aggregate capacities and total cost per MW.

E.6 WECC subregions

E.7 Model Code and Data Availability

CEM code and data are available at https://github.com/atpham88/US-CE.

https://github.com/atpham88/US-CE
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Fig. E.1: WECC subregions used in the CEM and RAM. Arrows show trans-
mission flows between the subregions.

F Economic Dispatch Model

To calculate daily SAC and ENS, we run an economic dispatch model (EDM)
for each decarbonization pathway output by our capacity expansion model in
2030 and 2040. The EDMminimizes the sum of operating, CO2 emission, inter-
regional transmission, and ENS costs by optimizing generation, inter-regional
transmission, and ENS decision variables. Our EDM divides WECC into the
same five regions as our CEM; inter-regional transmission and capacity invest-
ments are optimized between regions, and supply and demand are balanced
within each region (accounting for imports and exports). For computational
tractability, the EDM aggregates geothermal, waste, biomass, and other small
fossil plants of small capacities within each plant type together (these plant
types are denoted as other plant type in our results).

F.1 Functional Forms

F.1.1 Parameters and Variables

F.2 Objective Function

The EDM model’s objective function is:

TCEDM =
∑
i,t

pi,t × (OCi +HRi × ERCO2
i × CP ) +

∑
z,t

ensz,t × CENS

+
∑
l,t

fl,t × FLC ∀i ∈ I, l ∈ L, z ∈ Z (25)

where t indexes time intervals (days); i indexes existing units; l indexes
transmission lines; z indexes regions; p is electricity generation (MWh); OC
is operational cost ($/MWh); HR is heat rate (MMBtu/MWh); ER is CO2

emissions rate (ton/MMBtu); CP is CO2 emissions price ($/ton); ens is energy
not served (MWh); CENS is cost of energy not served ($/MWh); FLC is the
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Parameter Definition Unit

PMAX
i Maximum power rating of existing unit i MW

PMAX
l Maximum transmission capacity of line l MW

V OMi Variable O&M cost of existing unit i $/MWh

OCi Operational cost of existing unit i $/MWh

FCi Fuel cost of existing unit i $/MMBtu

HRi Heat rate of existing unit i MMBtu/MWh

ERCO2
i CO2 emissions rate of existing unit i ton/MMBtu

CP CO2 emissions price $/ton

Dz,t Total load (or electricity demand) in region z at time t MWh

PMAX,WIND
t,z Maximum aggregate wind profile in region z at time t MW

PMAX,SOLAR
t,z Maximum aggregate solar profile in region z at time t MW

Hb,z Maximum hydropower generation in region z and month b MWh

FORi,t Forced outage rate of existing unit i at time t –

DRi,t Capacity derate of existing unit i at time t –

CENS Cost of energy not served $/MWh

FLC Cost of electricity flows between regions $/MWh

Table 12: List of Parameters (Continued)

Set Definition Index Note

I Set of existing units i –

Iz Set of existing units in region z iz Iz ∈ I
Ir Set of existing renewable units ir Ir ∈ I
Iw Set of existing wind units iw Iw ∈ I
Iwz Set of existing wind units in region z iwz Iwz ∈ Iw
Io Set of existing solar units io Io ∈ I
Ioz Set of existing solar units in region z ioz Ioz ∈ Io
L Set of transmission lines l –

LOUT
z Set of transmission lines flowing out of region z lOUT

z LOUT
z ∈ L

LIN
z Set of transmission lines flowing into region z lINz LIN

z ∈ L
B Set of months b –

T Set of days t –

Z Set of regions in WECC z –

Table 13: List of Sets

Variable Definition Unit

pi,t Electricity generation from existing unit i at time t MWh

ensz,t Energy not served in region z at time t MWh

fl,t Total electricity flow in line l at time t MWh

Table 14: List of Variables
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cost of electricity flows between regions ($/MWh); and f is electricity flows
between regions (MWh). The CENS is set large enough to be the energy of
last resort in the model (or $1000 per MWh), while the FLC is set to $1/MWh
to incentivize balancing within regions before relying on imports or exports.
OC is defined as:

OCi = V OMi +HRi × FCi ∀i ∈ I (26)

where V OM is variable O&M costs ($/MWh) and FC is fuel cost
($/MMBtu).

F.3 Constraints

The EDM requires supply balance demand at each time step in each region:

Dz,t +
∑

lOUT
z ∈LOUT

z

flOUT
z ,t ≤

∑
iz∈Iz

piz,t +
∑

lINz ∈LIN
z

flINz ,t × ν, ∀z ∈ Z, t ∈ T,

(27)

where iz indexes existing units in region z, lINz indexes lines flowing out of
region z, lOUT

z indexes transmission lines flowing out of region z, and f is
electricity flows along transmission lines.

The total electricity flow through a transmission line (fl,t) cannot exceed
the line’s transmission capacity (PMAX

l ):

fl,t ≤ PMAX
l , ∀l ∈ L, t ∈ T, (28)

where l indexes transmission lines, and fl,t is total electricity flow in line l at
time t (MWh).

Electricity generation by each generator is limited by its capacity derated
to account for thermal deratings (DR) when relevant and for forced outage
rates (FOR):

pi,t ≤ (1−DRi,t)× (1− FORi,t)× PMAX
i , ∀t ∈ T, i ∈ I (29a)

We account for thermal deratings for combustion turbines, NGCCs, and coal-
fired power plants, and FORs for all generators (Section SI.D). FORs are
applied for all units; wind and solar are assumed to have a 5% FOR, while all
other units have temperature-dependent forced outage rates (Section SI.D).

Combined electricity generation by wind and solar generators is limited to
aggregate wind and solar generation profiles derated by a forced outage rate
(FOR) set to 5%:∑

iwz∈Iwz

piwz ,t
≤ PMAX,WIND

z,t × (1− FOR), ∀t ∈ T, z ∈ Z, (30a)
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ioz∈Ioz

pioz ,t ≤ PMAX,SOLAR
z,t × (1− FOR), ∀t ∈ T, z ∈ Z, (30b)

Hydropower generation is constrained based on observed data for each of
our weather years. Since we ignore transmission constraints within each of
our five regions, we aggregate hydropower capacity by region, then limit total
hydropower generation by month (or time block):∑

tb∈Tb,ihz∈Ihz

pihz ,tb
≤ Hb,z,∀z ∈ Z, b ∈ B (31)

where ihz
indexes all hydropower units in region z and Hb,z equals maximum

total hydropower generation in month b and region z.

F.4 Model Code and Data Availability

EDM code and data are available at https://github.com/atpham88/US-CE.

G Surplus Available Capacity

We calculate SAC as:

SACz,t =
∑
iz∈Iz

AvailableNonHydroCapacityiz,t+ (32)

HydropowerGenerationz,t + TransmissionImportsz,t (33)

−TransmissionExportsz,t −Demandz,t (34)

Hydropower generation and transmission imports and exports are optimized
outputs from the EDM. Optimized hydropower generation accounts for
temperature-dependent FORs (Table 6) and monthly energy budgets (Section
B.3). Available non-hydropower capacity accounts for several factors. In the
case of wind and solar, it accounts for wind and solar capacity factors and an
assumed 5% FOR (Table 6). For all other non-hydropower plants, it accounts
for temperature dependent FORs and, in the case of fossil-based thermal plants
(combustion turbines, NGCCs, and coal-fired power plants), thermal deratings
(Table 6).

https://github.com/atpham88/US-CE

