REFERENCES
1 Bullock, T. N., Mullins, D. W. & Engelhard, V. H. Antigen density
presented by dendritic cells in vivo differentially affects the number
and avidity of primary, memory, and recall CD8+ T cells. J
Immunol 170 , 1822-1829 (2003).
https://doi.org:10.4049/jimmunol.170.4.1822
2 Almeida, J. R. et al. Antigen sensitivity is a major
determinant of CD8+ T-cell polyfunctionality and HIV-suppressive
activity. Blood 113 , 6351-6360 (2009).
https://doi.org:10.1182/blood-2009-02-206557
3 Miles, J. J., Douek, D. C. & Price, D. A. Bias in the alphabeta
T-cell repertoire: implications for disease pathogenesis and
vaccination. Immunol Cell Biol 89 , 375-387 (2011).
https://doi.org:10.1038/icb.2010.139
4 Dash, P. et al. Quantifiable predictive features define
epitope-specific T cell receptor repertoires. Nature547 , 89-93 (2017). https://doi.org:10.1038/nature22383
5 Obar, J. J., Khanna, K. M. & Lefrancois, L. Endogenous naive CD8+ T
cell precursor frequency regulates primary and memory responses to
infection. Immunity 28 , 859-869 (2008).
https://doi.org:10.1016/j.immuni.2008.04.010
6 Schulien, I. et al. Characterization of pre-existing and
induced SARS-CoV-2-specific CD8(+) T cells. Nat Med 27 ,
78-85 (2021). https://doi.org:10.1038/s41591-020-01143-2
7 Qi, Q. et al. Diversification of the antigen-specific T cell
receptor repertoire after varicella zoster vaccination. Sci Transl
Med 8 , 332ra346 (2016).
https://doi.org:10.1126/scitranslmed.aaf1725
8 Chen, G. et al. Sequence and Structural Analyses Reveal
Distinct and Highly Diverse Human CD8(+) TCR Repertoires to
Immunodominant Viral Antigens. Cell Rep 19 , 569-583
(2017). https://doi.org:10.1016/j.celrep.2017.03.072
9 Kalams, S. A. et al. Longitudinal analysis of T cell receptor
(TCR) gene usage by human immunodeficiency virus 1 envelope-specific
cytotoxic T lymphocyte clones reveals a limited TCR repertoire. J
Exp Med 179 , 1261-1271 (1994).
https://doi.org:10.1084/jem.179.4.1261
10 Hodapp, T. et al. Massive monoclonal expansion of CD4 T-cells
specific for a Mycobacterium tuberculosis ESAT-6 peptide. Eur
Respir J 40 , 152-160 (2012).
https://doi.org:10.1183/09031936.00175611
11 Aleksic, M. et al. Dependence of T cell antigen recognition on
T cell receptor-peptide MHC confinement time. Immunity32 , 163-174 (2010).
https://doi.org:10.1016/j.immuni.2009.11.013
12 Allard, M. et al. TCR-ligand dissociation rate is a robust and
stable biomarker of CD8+ T cell potency. JCI Insight 2(2017). https://doi.org:10.1172/jci.insight.92570
13 Nauerth, M. et al. TCR-ligand koff rate correlates with the
protective capacity of antigen-specific CD8+ T cells for adoptive
transfer. Sci Transl Med 5 , 192ra187 (2013).
https://doi.org:10.1126/scitranslmed.3005958
14 Nauerth, M. et al. Flow cytometry-based TCR-ligand Koff -rate
assay for fast avidity screening of even very small antigen-specific T
cell populations ex vivo. Cytometry A 89 , 816-825
(2016). https://doi.org:10.1002/cyto.a.22933
15 Purcarea, A. et al. Signatures of recent activation identify a
circulating T cell compartment containing tumor-specific antigen
receptors with high avidity. Sci Immunol 7 , eabm2077
(2022). https://doi.org:10.1126/sciimmunol.abm2077
16 Schober, K. et al. Reverse TCR repertoire evolution toward
dominant low-affinity clones during chronic CMV infection. Nat
Immunol 21 , 434-441 (2020).
https://doi.org:10.1038/s41590-020-0628-2
17 Oliveira, G. et al. Phenotype, specificity and avidity of
antitumour CD8(+) T cells in melanoma. Nature 596 ,
119-125 (2021). https://doi.org:10.1038/s41586-021-03704-y
18 Straub, A. et al. Recruitment of epitope-specific T cell
clones with a low-avidity threshold supports efficacy against mutational
escape upon re-infection. Immunity 56 , 1269-1284 e1266
(2023). https://doi.org:10.1016/j.immuni.2023.04.010
19 Cai, C. et al. Identification of human progenitors of
exhausted CD8(+) T cells associated with elevated IFN-gamma response in
early phase of viral infection. Nat Commun 13 , 7543
(2022). https://doi.org:10.1038/s41467-022-35281-7
20 Cunningham, E. B. et al. Ongoing incident hepatitis C virus
infection among people with a history of injecting drug use in an
Australian prison setting, 2005-2014: The HITS-p study. J Viral
Hepat 24 , 733-741 (2017).
https://doi.org:10.1111/jvh.12701
21 Page-Shafer, K. et al. Testing strategy to identify cases of
acute hepatitis C virus (HCV) infection and to project HCV incidence
rates. J Clin Microbiol 46 , 499-506 (2008).
https://doi.org:10.1128/JCM.01229-07
22 Eltahla, A. A. et al. Linking the T cell receptor to the
single cell transcriptome in antigen-specific human T cells.Immunol Cell Biol 94 , 604-611 (2016).
https://doi.org:10.1038/icb.2016.16
23 Hombrink, P. et al. Mixed functional characteristics
correlating with TCR-ligand koff -rate of MHC-tetramer reactive T cells
within the naive T-cell repertoire. Eur J Immunol 43 ,
3038-3050 (2013). https://doi.org:10.1002/eji.201343397
24 Richard, A. C. et al. T cell cytolytic capacity is independent
of initial stimulation strength. Nat Immunol 19 , 849-858
(2018). https://doi.org:10.1038/s41590-018-0160-9
25 Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and
differentiation potential of human CD8+ memory T-cell subsets in
response to antigen or homeostatic cytokines. Blood 101 ,
4260-4266 (2003). https://doi.org:10.1182/blood-2002-11-3577
26 Day, E. K. et al. Rapid CD8+ T cell repertoire focusing and
selection of high-affinity clones into memory following primary
infection with a persistent human virus: human cytomegalovirus. J
Immunol 179 , 3203-3213 (2007).
https://doi.org:10.4049/jimmunol.179.5.3203
27 Knudson, K. M., Goplen, N. P., Cunningham, C. A., Daniels, M. A. &
Teixeiro, E. Low-affinity T cells are programmed to maintain normal
primary responses but are impaired in their recall to low-affinity
ligands. Cell Rep 4 , 554-565 (2013).
https://doi.org:10.1016/j.celrep.2013.07.008
28 Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell
response to very low-affinity antigen. Nature 458 ,
211-214 (2009). https://doi.org:10.1038/nature07657
29 Solouki, S. et al. TCR Signal Strength and Antigen Affinity
Regulate CD8(+) Memory T Cells. J Immunol 205 , 1217-1227
(2020). https://doi.org:10.4049/jimmunol.1901167
30 Martinez, R. J. & Evavold, B. D. Lower Affinity T Cells are Critical
Components and Active Participants of the Immune Response. Front
Immunol 6 , 468 (2015).
https://doi.org:10.3389/fimmu.2015.00468
31 Abdel-Hakeem, M. S., Bedard, N., Murphy, D., Bruneau, J. & Shoukry,
N. H. Signatures of protective memory immune responses during hepatitis
C virus reinfection. Gastroenterology 147 , 870-881 e878
(2014). https://doi.org:10.1053/j.gastro.2014.07.005
32 Luxenburger, H., Neumann-Haefelin, C., Thimme, R. & Boettler, T.
HCV-Specific T Cell Responses During and After Chronic HCV Infection.Viruses 10 (2018).
https://doi.org:10.3390/v10110645
33 Tscharke, D. C., Croft, N. P., Doherty, P. C. & La Gruta, N. L.
Sizing up the key determinants of the CD8(+) T cell response. Nat
Rev Immunol 15 , 705-716 (2015).
https://doi.org:10.1038/nri3905
34 Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing.Nat Med 18 , 980-987 (2012).
https://doi.org:10.1038/nm.2764
35 Picelli, S. et al. Smart-seq2 for sensitive full-length
transcriptome profiling in single cells. Nature Methods10 , 1096-1098 (2013). https://doi.org:10.1038/nmeth.2639
36 Picelli, S. et al. Full-length RNA-seq from single cells using
Smart-seq2. Nature Protocols 9 , 171-181 (2014).
https://doi.org:10.1038/nprot.2014.006
37 Wang, G. C., Dash, P., McCullers, J. A., Doherty, P. C. & Thomas, P.
G. T cell receptor alphabeta diversity inversely correlates with
pathogen-specific antibody levels in human cytomegalovirus infection.Sci Transl Med 4 , 128ra142 (2012).
https://doi.org:10.1126/scitranslmed.3003647