References
1. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022.Kidney Int Suppl (2011) . 2022;12(1):7-11.
doi:10.1016/j.kisu.2021.11.003
2. Humphreys BD. Mechanisms of Renal Fibrosis. Annu Rev Physiol.2018;80:309-326. doi:10.1146/annurev-physiol-022516-034227
3. Wang W, Ma B lei, Xu C geng, Zhou X jun. Dihydroquercetin protects
against renal fibrosis by activating the Nrf2 pathway.Phytomedicine. 2020;69:153185. doi:10.1016/j.phymed.2020.153185
4. Hewitson TD, Holt SG, Smith ER. Progression of Tubulointerstitial
Fibrosis and the Chronic Kidney Disease Phenotype - Role of Risk Factors
and Epigenetics. Front Pharmacol. 2017;8:520.
doi:10.3389/fphar.2017.00520
5. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease.Lancet. 2017;389(10075):1238-1252.
doi:10.1016/S0140-6736(16)32064-5
6. Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial
control of inflammation. Nat Rev Immunol. 2023;23(3):159-173.
doi:10.1038/s41577-022-00760-x
7. Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving
mitochondrial science beyond function and dysfunction. Nat Metab.2023;5(4):546-562. doi:10.1038/s42255-023-00783-1
8. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction
in inherited renal disease and acute kidney injury. Nat Rev
Nephrol. 2016;12(5):267-280. doi:10.1038/nrneph.2015.214
9. Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force
toward chronic kidney disease. Kidney Int. 2018;93(3):568-579.
doi:10.1016/j.kint.2017.09.033
10. Ye L, Yu Y, Zhao Y. Icariin-induced miR-875-5p attenuates
epithelial-mesenchymal transition by targeting hedgehog signaling in
liver fibrosis. J Gastroenterol Hepatol. 2020;35(3):482-491.
doi:10.1111/jgh.14875
11. Algandaby MM, Breikaa RM, Eid BG, Neamatallah TA, Abdel-Naim AB,
Ashour OM. Icariin protects against thioacetamide-induced liver fibrosis
in rats: Implication of anti-angiogenic and anti-autophagic properties.Pharmacol Rep. 2017;69(4):616-624.
doi:10.1016/j.pharep.2017.02.016
12. Qi MY, He YH, Cheng Y, et al. Icariin ameliorates
streptozocin-induced diabetic nephropathy through suppressing the
TLR4/NF-κB signal pathway. Food Funct. 2021;12(3):1241-1251.
doi:10.1039/d0fo02335c
13. Wu B, Feng J, Yu L, et al. Icariin protects cardiomyocytes against
ischaemia/reperfusion injury by attenuating sirtuin 1‐dependent
mitochondrial oxidative damage. Brit J Pharmacology.2018;175(21):4137-4153. doi:10.1111/bph.14457
14. Yu LM, Dong X, Xu YL, et al. Icariin attenuates excessive alcohol
consumption-induced susceptibility to atrial fibrillation through SIRT3
signaling. Biochim Biophys Acta Mol Basis Dis.2022;1868(10):166483. doi:10.1016/j.bbadis.2022.166483
15. Qiao C, Ye W, Li S, Wang H, Ding X. Icariin modulates mitochondrial
function and apoptosis in high glucose-induced glomerular podocytes
through G protein-coupled estrogen receptors. Mol Cell
Endocrinol. 2018;473:146-155. doi:10.1016/j.mce.2018.01.014
16. Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a
model of renal interstitial fibrosis and obstructive nephropathy.Kidney Int. 2009;75(11):1145-1152. doi:10.1038/ki.2009.86
17. Ding X, Zhao H, Qiao C. Icariin protects podocytes from NLRP3
activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis
in diabetic nephropathy. Phytomedicine. 2022;99:154005.
doi:10.1016/j.phymed.2022.154005
18. Yu LM, Dong X, Li N, et al. Polydatin attenuates chronic alcohol
consumption-induced cardiomyopathy through a SIRT6-dependent mechanism.Food Funct. 2022;13(13):7302-7319. doi:10.1039/d2fo00966h
19. Chung KW, Dhillon P, Huang S, et al. Mitochondrial Damage and
Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis.Cell Metab. 2019;30(4):784-799.e5. doi:10.1016/j.cmet.2019.08.003
20. Li X, Zhang W, Cao Q, et al. Mitochondrial dysfunction in fibrotic
diseases. Cell Death Discov. 2020;6(1):1-14.
doi:10.1038/s41420-020-00316-9
21. Zheng L, Wu S, Jin H, et al. Molecular mechanisms and therapeutic
potential of icariin in the treatment of Alzheimer’s disease.Phytomedicine. 2023;116:154890. doi:10.1016/j.phymed.2023.154890
22. Zeng Y, Xiong Y, Yang T, et al. Icariin and its metabolites as
potential protective phytochemicals against cardiovascular disease: From
effects to molecular mechanisms. Biomed Pharmacother.2022;147:112642. doi:10.1016/j.biopha.2022.112642
23. Liu Y, Yang H, Xiong J, et al. Icariin as an emerging candidate drug
for anticancer treatment: Current status and perspective. Biomed
Pharmacother. 2023;157:113991. doi:10.1016/j.biopha.2022.113991
24. Du W, Tang Z, Yang F, Liu X, Dong J. Icariin attenuates
bleomycin-induced pulmonary fibrosis by targeting Hippo/YAP pathway.Biomed Pharmacother. 2021;143:112152.
doi:10.1016/j.biopha.2021.112152
25. Zhang L, Wang S, Li Y, Wang Y, Dong C, Xu H. Cardioprotective effect
of icariin against myocardial fibrosis and its molecular mechanism in
diabetic cardiomyopathy based on network pharmacology: Role of ICA in
DCM. Phytomedicine. 2021;91:153607.
doi:10.1016/j.phymed.2021.153607
26. Chen H, Chen CM, Guan SS, Chiang CK, Wu CT, Liu SH. The antifibrotic
and anti-inflammatory effects of icariin on the kidney in a unilateral
ureteral obstruction mouse model. Phytomedicine. 2019;59:152917.
doi:10.1016/j.phymed.2019.152917
27. Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator
of tubulointerstitial fibrosis after injury. Cell Death Dis.2018;9(11):1126. doi:10.1038/s41419-018-1157-x
28. Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and
Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal.2016;25(12):657-684. doi:10.1089/ars.2016.6664
29. Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial
dysfunction in chronic kidney disease. Kidney Int.2017;92(5):1051-1057. doi:10.1016/j.kint.2017.05.034
30. Wang FY, Jia J, Song HH, Jia CM, Chen CB, Ma J. Icariin protects
vascular endothelial cells from oxidative stress through inhibiting
endoplasmic reticulum stress. J Integr Med. 2019;17(3):205-212.
doi:10.1016/j.joim.2019.01.011
31. Song YH, Cai H, Zhao ZM, et al. Icariin attenuated oxidative stress
induced-cardiac apoptosis by mitochondria protection and ERK activation.Biomed Pharmacother. 2016;83:1089-1094.
doi:10.1016/j.biopha.2016.08.016
32. Zhang C, Cao Z, Lei H, et al. Discovery of a novel small molecule
with efficacy in protecting against inflammation in vitro and in vivo by
enhancing macrophages activation. Biomed Pharmacother.2023;165:115273. doi:10.1016/j.biopha.2023.115273
33. Xiong D, Deng Y, Huang B, et al. Icariin attenuates cerebral
ischemia-reperfusion injury through inhibition of inflammatory response
mediated by NF-κB, PPARα and PPARγ in rats. Int Immunopharmacol.2016;30:157-162. doi:10.1016/j.intimp.2015.11.035
34. Su B, Ye H, You X, Ni H, Chen X, Li L. Icariin alleviates murine
lupus nephritis via inhibiting NF-κB activation pathway and NLRP3
inflammasome. Life Sci. 2018;208:26-32.
doi:10.1016/j.lfs.2018.07.009
35. Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity.EMBO Rep . 2020;21(4):e49799. doi:10.15252/embr.201949799
36. Zhu Z, Liang W, Chen Z, et al. Mitoquinone Protects Podocytes from
Angiotensin II-Induced Mitochondrial Dysfunction and Injury via the
Keap1-Nrf2 Signaling Pathway. Oxid Med Cell Longev.2021;2021:1394486. doi:10.1155/2021/1394486
37. Xiao L, Xu X, Zhang F, et al. The mitochondria-targeted antioxidant
MitoQ ameliorated tubular injury mediated by mitophagy in diabetic
kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297-311.
doi:10.1016/j.redox.2016.12.022
38. Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of
Nrf2, Keap1: a historical overview. Antioxid Redox Signal.2010;13(11):1665-1678. doi:10.1089/ars.2010.3222
39. Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired
Nrf2 activation in the pathogenesis of oxidative stress and inflammation
in chronic tubulo-interstitial nephropathy. Nephrol Dial
Transplant. 2013;28(8):2038-2045. doi:10.1093/ndt/gft022
40. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway:
Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis
Dis. 2017;1863(2):585-597. doi:10.1016/j.bbadis.2016.11.005
41. Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to
oxidative stress and inflammation in chronic renal failure. Am J
Physiol Renal Physiol. 2010;298(3):F662-671.
doi:10.1152/ajprenal.00421.2009
42. Lu Y, Sun Y, Liu Z, et al. Activation of NRF2 ameliorates oxidative
stress and cystogenesis in autosomal dominant polycystic kidney disease.Sci Transl Med. 2020;12(554):eaba3613.
doi:10.1126/scitranslmed.aba3613
43. Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, et al.
Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel).2020;10(1):39. doi:10.3390/antiox10010039
44. Nezu M, Suzuki N, Yamamoto M. Targeting the KEAP1-NRF2 System to
Prevent Kidney Disease Progression. Am J Nephrol.2017;45(6):473-483. doi:10.1159/000475890
45. Wang K, Zheng X, Pan Z, et al. Icariin Prevents Extracellular Matrix
Accumulation and Ameliorates Experimental Diabetic Kidney Disease by
Inhibiting Oxidative Stress via GPER Mediated p62-Dependent Keap1
Degradation and Nrf2 Activation. Front Cell Dev Biol. 2020;8:559.
doi:10.3389/fcell.2020.00559
46. El-Shitany NA, Eid BG. Icariin modulates carrageenan-induced acute
inflammation through HO-1/Nrf2 and NF-kB signaling pathways.Biomed Pharmacother. 2019;120:109567.
doi:10.1016/j.biopha.2019.109567