References
1. H. Sung et al. , Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185
Countries. CA Cancer J Clin 71 , 209-249 (2021).
2. A. Alqahtani et al. , Hepatocellular Carcinoma: Molecular
Mechanisms and Targeted Therapies. Medicina (Kaunas) 55(2019).
3. J. Hou, H. Zhang, B. Sun, M. Karin, The immunobiology of
hepatocellular carcinoma in humans and mice: Basic concepts and
therapeutic implications. J Hepatol 72 , 167-182 (2020).
4. C. Campani, J. Zucman-Rossi, J. C. Nault, Genetics of Hepatocellular
Carcinoma: From Tumor to Circulating DNA. Cancers (Basel)15 (2023).
5. G. He, M. Karin, NF-kappaB and STAT3 - key players in liver
inflammation and cancer. Cell Res 21 , 159-168 (2011).
6. E. F. Wagner, A. R. Nebreda, Signal integration by JNK and p38 MAPK
pathways in cancer development. Nat Rev Cancer 9 ,
537-549 (2009).
7. R. Eferl, E. F. Wagner, AP-1: a double-edged sword in tumorigenesis.Nat Rev Cancer 3 , 859-868 (2003).
8. G. L. Rampioni Vinciguerra et al. , Role of Fra-2 in cancer.Cell Death Differ 10.1038/s41418-023-01248-4 (2023).
9. E. Stepniak et al. , c-Jun/AP-1 controls liver regeneration by
repressing p53/p21 and p38 MAPK activity. Genes Dev 20 ,
2306-2314 (2006).
10. I. Schulien et al. , The transcription factor c-Jun/AP-1
promotes liver fibrosis during non-alcoholic steatohepatitis by
regulating Osteopontin expression. Cell Death Differ 26 ,
1688-1699 (2019).
11. P. Hasselblatt, M. Rath, V. Komnenovic, K. Zatloukal, E. F. Wagner,
Hepatocyte survival in acute hepatitis is due to c-Jun/AP-1-dependent
expression of inducible nitric oxide synthase. Proc Natl Acad Sci
U S A 104 , 17105-17110 (2007).
12. M. Fuest et al. , The transcription factor c-Jun protects
against sustained hepatic endoplasmic reticulum stress thereby promoting
hepatocyte survival. Hepatology 55 , 408-418 (2012).
13. R. Eferl et al. , Liver tumor development. c-Jun antagonizes
the proapoptotic activity of p53. Cell 112 , 181-192
(2003).
14. L. Hui, K. Zatloukal, H. Scheuch, E. Stepniak, E. F. Wagner,
Proliferation of human HCC cells and chemically induced mouse liver
cancers requires JNK1-dependent p21 downregulation. J Clin Invest118 , 3943-3953 (2008).
15. K. Machida et al. , c-Jun mediates hepatitis C virus
hepatocarcinogenesis through signal transducer and activator of
transcription 3 and nitric oxide-dependent impairment of oxidative DNA
repair. Hepatology 52 , 480-492 (2010).
16. L. Min et al. , Liver cancer initiation is controlled by AP-1
through SIRT6-dependent inhibition of survivin. Nat Cell Biol14 , 1203-1211 (2012).
17. L. Bakiri, E. F. Wagner, Mouse models for liver cancer. Mol
Oncol 7 , 206-223 (2013).
18. C. Trierweiler et al. , The transcription factor c-JUN/AP-1
promotes HBV-related liver tumorigenesis in mice. Cell Death
Differ 23 , 576-582 (2016).
19. L. Bakiri et al. , Liver carcinogenesis by FOS-dependent
inflammation and cholesterol dysregulation. J Exp Med214 , 1387-1409 (2017).
20. M. K. Thomsen et al. , JUNB/AP-1 controls IFN-gamma during
inflammatory liver disease. J Clin Invest 123 , 5258-5268
(2013).
21. D. E. Smart et al. , JunD is a profibrogenic transcription
factor regulated by Jun N-terminal kinase-independent phosphorylation.Hepatology 44 , 1432-1440 (2006).
22. S. C. Hasenfuss et al. , Regulation of steatohepatitis and
PPARgamma signaling by distinct AP-1 dimers. Cell Metab19 , 84-95 (2014).
23. S. C. Hasenfuss, L. Bakiri, M. K. Thomsen, R. Hamacher, E. F.
Wagner, Activator Protein 1 transcription factor Fos-related antigen 1
(Fra-1) is dispensable for murine liver fibrosis, but modulates
xenobiotic metabolism. Hepatology 59 , 261-273 (2014).
24. L. Bakiri, S. C. Hasenfuss, E. F. Wagner, A FATal AP-1 dimer switch
in hepatosteatosis. Cell Cycle 13 , 1218-1219 (2014).
25. L. Bakiri, K. Matsuo, M. Wisniewska, E. F. Wagner, M. Yaniv,
Promoter specificity and biological activity of tethered AP-1 dimers.Mol Cell Biol 22 , 4952-4964 (2002).
26. A. Kobeissy et al. , Protein Induced by Vitamin K Absence or
Antagonist-II Versus Alpha-Fetoprotein in the Diagnosis of
Hepatocellular Carcinoma: A Systematic Review With Meta-Analysis.J Clin Med Res 15 , 343-359 (2023).
27. X. Zhou et al. , MCM2 promotes the stemness and sorafenib
resistance of hepatocellular carcinoma cells via hippo signaling.Cell Death Discov 8 , 418 (2022).
28. M. Wang et al. , SOX9 enhances sorafenib resistance through
upregulating ABCG2 expression in hepatocellular carcinoma. Biomed
Pharmacother 129 , 110315 (2020).
29. M. B. Ruzinova et al. , SOX9 Expression Is Superior to Other
Stem Cell Markers K19 and EpCAM in Predicting Prognosis in
Hepatocellular Carcinoma. Am J Surg Pathol 47 , 1-11
(2023).
30. A. Subramanian et al. , Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A 102 , 15545-15550
(2005).
31. A. M. Newman et al. , Determining cell type abundance and
expression from bulk tissues with digital cytometry. Nat
Biotechnol 37 , 773-782 (2019).
32. R. Carlessi et al. , Single-nucleus RNA sequencing of
pre-malignant liver reveals disease-associated hepatocyte state with HCC
prognostic potential. Cell Genom 3 , 100301 (2023).
33. Y. Hoshida et al. , Integrative transcriptome analysis reveals
common molecular subclasses of human hepatocellular carcinoma.Cancer Res 69 , 7385-7392 (2009).
34. S. Boyault et al. , Transcriptome classification of HCC is
related to gene alterations and to new therapeutic targets.Hepatology 45 , 42-52 (2007).
35. H. G. Woo et al. , Identification of a cholangiocarcinoma-like
gene expression trait in hepatocellular carcinoma. Cancer Res70 , 3034-3041 (2010).
36. J. S. Lee et al. , A novel prognostic subtype of human
hepatocellular carcinoma derived from hepatic progenitor cells.Nat Med 12 , 410-416 (2006).
37. S. Cairo et al. , Hepatic stem-like phenotype and interplay of
Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer.Cancer Cell 14 , 471-484 (2008).
38. J. S. Lee et al. , Application of comparative functional
genomics to identify best-fit mouse models to study human cancer.Nat Genet 36 , 1306-1311 (2004).
39. N. Aizarani et al. , A human liver cell atlas reveals
heterogeneity and epithelial progenitors. Nature 572 ,
199-204 (2019).
40. L. Zhou et al. , Integrated Analysis Highlights the
Immunosuppressive Role of TREM2(+) Macrophages in Hepatocellular
Carcinoma. Front Immunol 13 , 848367 (2022).
41. Y. Liao, J. Wang, E. J. Jaehnig, Z. Shi, B. Zhang, WebGestalt 2019:
gene set analysis toolkit with revamped UIs and APIs. Nucleic
Acids Res 47 , W199-W205 (2019).
42. N. Kiuchi et al. , STAT3 is required for the gp130-mediated
full activation of the c-myc gene. J Exp Med 189 , 63-73
(1999).
43. E. J. Sun, M. Wankell, P. Palamuthusingam, C. McFarlane, L. Hebbard,
Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma.Biomedicines 9 (2021).
44. B. N. Song, I. S. Chu, A gene expression signature of FOXM1 predicts
the prognosis of hepatocellular carcinoma. Exp Mol Med50 , e418 (2018).
45. G. S. Yochum, R. Cleland, R. H. Goodman, A genome-wide screen for
beta-catenin binding sites identifies a downstream enhancer element that
controls c-Myc gene expression. Mol Cell Biol 28 ,
7368-7379 (2008).
46. E. C. Partridge et al. , Occupancy maps of 208
chromatin-associated proteins in one human cell type. Nature583 , 720-728 (2020).
47. C. G. A. R. Network., Comprehensive and Integrative Genomic
Characterization of Hepatocellular Carcinoma. Cell 169 ,
1327-1341 e1323 (2017).
48. P. Filippakopoulos et al. , Selective inhibition of BET
bromodomains. Nature 468 , 1067-1073 (2010).
49. M. P. Schwalm, S. Knapp, BET bromodomain inhibitors. Curr Opin
Chem Biol 68 , 102148 (2022).
50. S. Hagiwara et al. , Activation of JNK and high expression
level of CD133 predict a poor response to sorafenib in hepatocellular
carcinoma. Br J Cancer 106 , 1997-2003 (2012).
51. W. Chen et al. , Activation of c-Jun predicts a poor response
to sorafenib in hepatocellular carcinoma: Preliminary Clinical Evidence.Sci Rep 6 , 22976 (2016).
52. J. Yu et al. , Inhibitory role of peroxisome
proliferator-activated receptor gamma in hepatocarcinogenesis in mice
and in vitro. Hepatology 51 , 2008-2019 (2010).
53. F. X. Schaub et al. , Pan-cancer Alterations of the MYC
Oncogene and Its Proximal Network across the Cancer Genome Atlas.Cell Syst 6 , 282-300 e282 (2018).
54. M. Gabay, Y. Li, D. W. Felsher, MYC activation is a hallmark of
cancer initiation and maintenance. Cold Spring Harb Perspect Med4 (2014).
55. R. Dhanasekaran et al. , MYC Overexpression Drives Immune
Evasion in Hepatocellular Carcinoma That Is Reversible through
Restoration of Proinflammatory Macrophages. Cancer Res83 , 626-640 (2023).
56. T. R. Kress et al. , Identification of MYC-Dependent
Transcriptional Programs in Oncogene-Addicted Liver Tumors. Cancer
Res 76 , 3463-3472 (2016).
57. B. L. Allen-Petersen, R. C. Sears, Mission Possible: Advances in MYC
Therapeutic Targeting in Cancer. BioDrugs 33 , 539-553
(2019).
58. J. R. Whitfield, L. Soucek, The long journey to bring a Myc
inhibitor to the clinic. J Cell Biol 220 (2021).
59. A. G. Cochran, A. R. Conery, R. J. Sims, 3rd, Bromodomains: a new
target class for drug development. Nat Rev Drug Discov18 , 609-628 (2019).
60. E. K. Baker et al. , BET inhibitors induce apoptosis through a
MYC independent mechanism and synergise with CDK inhibitors to kill
osteosarcoma cells. Sci Rep 5 , 10120 (2015).
61. L. Soucek et al. , Modelling Myc inhibition as a cancer
therapy. Nature 455 , 679-683 (2008).