References
1. Thompson RCA. 2017. Biology and Systematics of Echinococcus. Adv
Parasitol 95:65–109.
2. Díaz Á. 2017. Immunology of cystic echinococcosis (hydatid disease).
British Medical Bulletin 124:121–133.
3. Díaz A, Barrios AA, Grezzi L, Mouhape C, Jenkins SJ, Allen JE,
Casaravilla C. 2023. Immunology of a unique biological structure: the
Echinococcus laminated layer. Protein & Cell 14:87–104.
4. Díaz A, Casaravilla C, Allen JE, Sim RB, Ferreira AM. 2011.
Understanding the laminated layer of larval Echinococcus II: immunology.
Trends in Parasitology 27:264–273.
5. Díaz A, Casaravilla C, Irigoín F, Lin G, Previato JO, Ferreira F.
2011. Understanding the laminated layer of larval Echinococcus I:
structure. Trends in Parasitology 27:204–213.
6. Díaz Á, Fernández C, Pittini Á, Seoane PI, Allen JE, Casaravilla C.
2015. The laminated layer: Recent advances and insights into
Echinococcus biology and evolution. Experimental Parasitology
158:23–30.
7. Casaravilla C, Díaz A. 2010. Studies on the structural mucins of the
Echinococcus granulosus laminated layer. Molecular and Biochemical
Parasitology 174:132–136.
8. Casaravilla C, Brearley C, Soule S, Fontana C, Veiga N, Bessio MI,
Ferreira F, Kremer C, Diaz A. 2006. Characterization of myo-inositol
hexakisphosphate deposits from larval Echinococcus granulosus. FEBS
Journal 273:3192–3203.
9. Irigoín F, Casaravilla C, Iborra F, Sim RB, Ferreira F, Díaz A. 2004.
Unique precipitation and exocytosis of a calcium salt of myo-inositol hexakisphosphate in larval Echinococcus granulosus . J
Cell Biochem 93:1272–1281.
10. Irigoín F, Ferreira F, Fernández C, Sim RB, Díaz A. 2002.
myo-Inositol hexakisphosphate is a major component of an extracellular
structure in the parasitic cestode Echinococcus granulosus 8.
11. Grimm J, Nell J, Hillenbrand A, Henne-Bruns D, Schmidberger J,
Kratzer W, Gruener B, Graeter T, Reinehr M, Weber A, Deplazes P, Möller
P, Beck A, Barth TFE. 2020. Immunohistological detection of small
particles of Echinococcus multilocularis and Echinococcus granulosus in
lymph nodes is associated with enlarged lymph nodes in alveolar and
cystic echinococcosis. PLoS Negl Trop Dis 14:e0008921.
12. Barrios AA, Mouhape C, Schreiber L, Zhang L, Nell J, Suárez-Martins
M, Schlapp G, Meikle MN, Mulet AP, Hsu T-L, Hsieh S-L, Mourglia-Ettlin
G, González C, Crispo M, Barth TFE, Casaravilla C, Jenkins SJ, Díaz Á.
2023. Mucins shed from the laminated layer in cystic echinococcosis are
captured by Kupffer cells via the lectin receptor Clec4F. bioRxiv
https://doi.org/10.1101/2022.10.06.511139.
13. Hsu T-L, Lin G, Koizumi A, Brehm K, Hada N, Chuang P-K, Wong C-H,
Hsieh S-L, Díaz A. 2013. The surface carbohydrates of the Echinococcus
granulosus larva interact selectively with the rodent Kupffer cell
receptor. Molecular and Biochemical Parasitology 192:55–59.
14. Díaz Á, Sagasti C, Casaravilla C. 2018. Granulomatous responses in
larval taeniid infections. Parasite Immunol 40:e12523.
15. Barrios AA, Grezzi L, Miles S, Mariconti M, Mourglia-Ettlin G,
Seoane PI, Díaz A. 2019. Inefficient and abortive classical complement
pathway activation by the calcium inositol hexakisphosphate component of
the Echinococcus granulosus laminated layer. Immunobiology 224:710–719.
16. Casaravilla C, Pittini Á, Rückerl D, Seoane PI, Jenkins SJ,
MacDonald AS, Ferreira AM, Allen JE, Díaz Á. 2014. Unconventional
Maturation of Dendritic Cells Induced by Particles from the Laminated
Layer of Larval Echinococcus granulosus. Infect Immun 82:3164–3176.
17. Díaz A, Casaravilla C, Barrios AA, Ferreira AM. 2016. Parasite
molecules and host responses in cystic echinococcosis. Parasite Immunol
38:193–205.
18. Pittini Á, Martínez-Acosta YE, Casaravilla C, Seoane PI, Rückerl D,
Quijano C, Allen JE, Díaz Á. 2019. Particles from the Echinococcus
granulosus Laminated Layer Inhibit CD40 Upregulation in Dendritic Cells
by Interfering with Akt Activation. Infect Immun 87.
19. Seoane PI, Rückerl D, Casaravilla C, Barrios AA, Pittini Á,
MacDonald AS, Allen JE, Díaz A. 2016. Particles from the Echinococcus
granulosus laminated layer inhibit IL-4 and growth factor-driven Akt
phosphorylation and proliferative responses in macrophages. Sci Rep
6:39204.
20. Louwe PA, Badiola Gomez L, Webster H, Perona-Wright G, Bain CC,
Forbes SJ, Jenkins SJ. 2021. Recruited macrophages that colonize the
post-inflammatory peritoneal niche convert into functionally divergent
resident cells. Nat Commun 12:1770.
21. Davies LC, Rosas M, Jenkins SJ, Liao C-T, Scurr MJ, Brombacher F,
Fraser DJ, Allen JE, Jones SA, Taylor PR. 2013. Distinct bone
marrow-derived and tissue-resident macrophage lineages proliferate at
key stages during inflammation. Nat Commun 4:1886.
22. Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. 2011.
A quantifiable proliferative burst of tissue macrophages restores
homeostatic macrophage populations after acute inflammation. Eur J
Immunol 41:2155–2164.
23. Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F,
Asurmendi S, Rosenzvit M. 2011. Identification of Echinococcus
granulosus microRNAs and their expression in different life cycle stages
and parasite genotypes. International Journal for Parasitology
41:439–448.
24. Veiga N, Torres J, Domínguez S, Mederos A, Irvine RF, Díaz A, Kremer
C. 2006. The behaviour of myo-inositol hexakisphosphate in the presence
of magnesium(II) and calcium(II): Protein-free soluble InsP6 is limited
to 49μM under cytosolic/nuclear conditions. Journal of Inorganic
Biochemistry 100:1800–1810.
25. Casaravilla C, Pittini Á, Rückerl D, Allen JE, Díaz Á. 2020.
Activation of the NLRP3 Inflammasome by Particles from the Echinococcus
granulosus Laminated Layer. Infect Immun 88.
26. Gautier EL, Ivanov S, Lesnik P, Randolph GJ. 2013. Local apoptosis
mediates clearance of macrophages from resolving inflammation in mice.
Blood 122:2714–2722.
27. Grezzi, L, Martínez YE, Barrios AA, Díaz Á, Casaravilla C.
Characterization of the immunosuppressive environment induced by larval
Echinococcus granulosus during chronic experimental infection. Infection
and Immunity. In press.
28. Hollander M, Wolfe DE, Chicken E. 2015. Nonparametric Statistical
Methods, 3rd ed. John Wiley & Sons, New York.
29. Conover WJ. 1999. Practical Nonparametric Statistics., 3rd ed. John
Wiley & Sons, New York.
30. McDonald JH. 2014. Handbook of Biological Statistics, 3rd ed. Sparky
House Publishing, Baltimore, Maryland.
31. Finlay CM, Parkinson JE, Zhang L, Chan BHK, Ajendra J, Chenery A,
Morrison A, Kaymak I, Houlder EL, Murtuza Baker S, Dickie BR, Boon L,
Konkel JE, Hepworth MR, MacDonald AS, Randolph GJ, Rückerl D, Allen JE.
2023. T helper 2 cells control monocyte to tissue-resident macrophage
differentiation during nematode infection of the pleural cavity.
Immunity 56:1064-1081.e10.
32. Bain CC, Hawley CA, Garner H, Scott CL, Schridde A, Steers NJ, Mack
M, Joshi A, Guilliams M, Mowat AMI, Geissmann F, Jenkins SJ. 2016.
Long-lived self-renewing bone marrow-derived macrophages displace
embryo-derived cells to inhabit adult serous cavities. Nat Commun
7:ncomms11852.
33. Louwe PA, Badiola Gomez L, Webster H, Perona-Wright G, Bain CC,
Forbes SJ, Jenkins SJ. 2021. Recruited macrophages that colonize the
post-inflammatory peritoneal niche convert into functionally divergent
resident cells. Nat Commun 12:1770.
34. Davies LC, Rosas M, Jenkins SJ, Liao C-T, Scurr MJ, Brombacher F,
Fraser DJ, Allen JE, Jones SA, Taylor PR. 2013. Distinct bone
marrow-derived and tissue-resident macrophage lineages proliferate at
key stages during inflammation. Nat Commun 4:1886.
35. Taylor ME, Snelling T, Smith DF, Drickamer K. 2019. Absence of a
human ortholog of rodent Kupffer cell galactose-binding receptor encoded
by the CLEC4f gene. Glycobiology 29:332–345.
36. Yang C-Y, Chen J-B, Tsai T-F, Tsai Y-C, Tsai C-Y, Liang P-H, Hsu
T-L, Wu C-Y, Netea MG, Wong C-H, Hsieh S-L. 2013. CLEC4F Is an Inducible
C-Type Lectin in F4/80-Positive Cells and Is Involved in
Alpha-Galactosylceramide Presentation in Liver. PLoS ONE 8:e65070.