References
Althuizen, I. H. J. et al. 2018. Long-term climate regime modulates the
impact of short-term climate variability on decomposition in alpine
grassland soils. - Ecosystems 21: 1580–1592.
Bartoń, K. 2023. MuMIn: Multi-Model Inference.
Bates, D. et al. 2015. Fitting Linear Mixed-Effects Models Using lme4. -
J. Stat. Softw. 67: 1–48.
Becker, J. N. and Kuzyakov, Y. 2018. Teatime on Mount Kilimanjaro:
Assessing climate and land-use effects on litter decomposition and
stabilization using the Tea Bag Index. - L. Degrad. Dev. 29: 2321–2329.
Bonan, G. B. et al. 2013. Evaluating litter decomposition in earth
system models with long-term litterbag experiments: an example using the
Community Land Model version 4 (CLM4). - Glob. Chang. Biol. 19:
957–974.
Bradford, M. A. et al. 2014. Climate fails to predict wood decomposition
at regional scales. - Nat. Clim. Chang. 4: 625–630.
Bradford, M. A. et al. 2016. Understanding the dominant controls on
litter decomposition. - J. Ecol. 104: 229–238.
Burnham, K. P. and Anderson, D. R. 2002. Model selection and inference:
a practical information-theoretic approach. - In: 2nd Editio.
Springer-Verlag, New York.
Catford, J. A. et al. 2022. Addressing context dependence in ecology. -
Trends Ecol. Evol. 37: 158–170.
Chen, Y. et al. 2018. Microclimate exerts greater control over litter
decomposition and enzyme activity than litter quality in an alpine
forest-tundra ecotone. - Sci. Rep. 8: 1–13.
Chen, B. et al. 2023. Microclimate along an elevational gradient
controls foliar litter cellulose and lignin degradation in a subtropical
forest. - Front. For. Glob. Chang. 6: 1–13.
Cornwell, W. K. et al. 2008. Plant species traits are the predominant
control on litter decomposition rates within biomes worldwide. - Ecol.
Lett. 11: 1065–1071.
Cuni-Sanchez, A. et al. 2021. High aboveground carbon stock of African
tropical montane forests. - Nature 596: 536–542.
Davidson, E. A. and Janssens, I. A. 2006. Temperature sensitivity of
soil carbon decomposition and feedbacks to climate change. - Nature 440:
165–173.
De Frenne, P. et al. 2019. Global buffering of temperatures under forest
canopies. - Nat. Ecol. Evol. 3: 744–749.
Djukic, I. et al. 2018. Early stage litter decomposition across biomes.
- Sci. Total Environ. 628–629: 1369–1394.
Dormann, C. F. et al. 2013. Collinearity: a review of methods to deal
with it and a simulation study evaluating their performance. - Ecography
36: 27–46.
Fanin, N. et al. 2020. Relative importance of climate, soil and plant
functional traits during the early decomposition stage of standardized
litter. - Ecosystems 23: 1004–1018.
Feyissa, A. et al. 2023. Soil carbon stabilization and potential
stabilizing mechanisms along elevational gradients in alpine forest and
grassland ecosystems of Southwest China. - Catena 229: 107210.
Forrester, J. A. et al. 2023. Experimental evidence that forest
structure controls detrital decomposition. - Ecosystems 26: 1396–1410.
Frazer, G. W. et al. 1999. Gap light analyzer (GLA): Imaging software to
extract canopy structure and gap light transmission indices from
true-colour sheye photographs, users manual and program documentation.
Fujii, S. et al. 2017. Disentangling relationships between plant
diversity and decomposition processes under forest restoration. - J.
Appl. Ecol. 54: 80–90.
Gallois, E. C. et al. 2023. Summer litter decomposition is moderated by
scale-dependent microenvironmental variation in tundra ecosystems. -
Oikos 2023: e10261.
Glassman, S. I. et al. 2018. Decomposition responses to climate depend
on microbial community composition. - Proc. Natl. Acad. Sci. U. S. A.
115: 11994–11999.
Handa, I. T. et al. 2014. Consequences of biodiversity loss for litter
decomposition across biomes. - Nature 509: 218–221.
He, X. et al. 2016. Altitudinal patterns and controls of plant and soil
nutrient concentrations and stoichiometry in subtropical China. - Sci.
Reports 2016 61 6: 1–9.
Hendershot, J. N. et al. 2017. Consistently inconsistent drivers of
microbial diversity and abundance at macroecological scales. - Ecology
98: 1757–1763.
Joly, F.-X. et al. 2017. Tree species diversity affects decomposition
through modified micro-environmental conditions across European forests.
- New Phytol. 214: 1281–1293.
Joly, F. X. et al. 2023. Resolving the intricate role of climate in
litter decomposition. - Nat. Ecol. Evol. 7: 214–223.
Jones, C. et al. 2005. Global climate change and soil carbon stocks;
predictions from two contrasting models for the turnover of organic
carbon in soil. - Glob. Chang. Biol. 11: 154–166.
Kaspari, M. et al. 2008. Multiple nutrients limit litterfall and
decomposition in a tropical forest. - Ecol. Lett. 11: 35–43.
Keuskamp, J. A. et al. 2013. Tea Bag Index: A novel approach to collect
uniform decomposition data across ecosystems. - Methods Ecol. Evol. 4:
1070–1075.
Koven, C. D. et al. 2017. Higher climatological temperature sensitivity
of soil carbon in cold than warm climates. - Nat. Clim. Chang. 7:
817–822.
Krishna, M. P. and Mohan, M. 2017. Litter decomposition in forest
ecosystems: a review. - Energy, Ecol. Environ. 2: 236–249.
Lembrechts, J. J. et al. 2022. Global maps of soil temperature. - Glob.
Chang. Biol. 28: 3110–3144.
Ma, S. et al. 2019. Plant species identity and soil characteristics
determine rhizosphere soil bacteria community composition in European
temperate forests. - FEMS Microbiol. Ecol. 95: 1–11.
Ma, L. et al. 2022. When microclimates meet soil microbes: Temperature
controls soil microbial diversity along an elevational gradient in
subtropical forests. - Soil Biol. Biochem. 166: 108566.
Mayer, M. et al. 2021. Soil fertility relates to fungal-mediated
decomposition and organic matter turnover in a temperate mountain
forest. - New Phytol. 231: 777–790.
Morffi-Mestre, H. et al. 2023. Leaf litter decomposition rates:
influence of successional age, topography and microenvironment on six
dominant tree species in a tropical dry forest. - Front. For. Glob.
Chang. 6: 1–13.
Mori, A. S. et al. 2020. A meta-analysis on decomposition quantifies
afterlife effects of plant diversity as a global change driver. - Nat.
Commun. 11: 1–9.
Pablo García-Palacios et al. 2013. Climate and litter quality
differently modulate the effects of soil fauna on litter decomposition
across biomes. - Ecol. Lett. 16: 1045–1053.
Phillips, J. et al. 2019. Differences in carbon stocks along an
elevational gradient in tropical mountain forests of Colombia. -
Biotropica 51: 490–499.
Price, M. F. et al. 2011. Mountain forests in a changing world:
realizing values, addressing challenges.
R Core Team 2014. R: A language and environment for statistical
computing. R Foundation for Statistical Computing.
Ren, S. et al. 2024. Projected soil carbon loss with warming in
constrained Earth system models. 15: 1–10.
Reyes, W. M. et al. 2017. Complex terrain influences ecosystem carbon
responses to temperature and precipitation. - Global Biogeochem. Cycles
31: 1306–1317.
Romaní, A. M. et al. 2006. Interactions of bacteria and fungi on
decomposing litter: Differential extracellular enzyme activities. -
Ecology 87: 2559–2569.
Rotach, M. W. et al. 2014. The world is not flat: Implications for the
global carbon balance. - Bull. Am. Meteorol. Soc. 95: 1021–1028.
Seidelmann, K. N. et al. 2016. Direct vs. Microclimate-driven effects of
tree species diversity on litter decomposition in young subtropical
forest stands. - PLoS One 11: 1–16.
Sitch, S. et al. 2003. Evaluation of ecosystem dynamics, plant geography
and terrestrial carbon cycling in the LPJ dynamic global vegetation
model. - Glob. Chang. Biol. 9: 161–185.
Spake, R. et al. 2022. Improving quantitative synthesis to achieve
generality in ecology. - Nat. Ecol. Evol. 6: 1818–1828.
Spohn, M. et al. 2023. The positive effect of plant diversity on soil
carbon depends on climate. - Nat. Commun. 14: 1–10.
Steidinger, B. S. et al. 2019. Climatic controls of decomposition drive
the global biogeography of forest-tree symbioses. - Nature 569:
404–408.
Tang, Y. et al. 2016. ggfortify: unified interface to visualize
statistical result of popular R packages. - R J. 8.2 2: 474–485.
Tenney, F. G. and Waksman, S. A. 1929. Composition of natural organic
materials and their decomposition in the soil: iv. The nature and
rapidity of decomposition of the various organic complexes in different
plant materials, under aerobic conditions. - Soil Sci. 28: 55–84.
Vellend, M. 2016. The Theory of Ecological Communities.pdf. - Princeton
University.
von Oppen, J. et al. 2024. Microclimate explains little variation in
year-round decomposition across an Arctic tundra landscape. - Nord. J.
Bot. 1: e04062.
Wall, D. H. et al. 2008. Global decomposition experiment shows soil
animal impacts on decomposition are climate-dependent. - Glob. Chang.
Biol. 14: 2661–2677.
Wardle, D. A. et al. 2004. Ecological linkages between aboveground and
belowground biota. - Science 304: 1629–1633.
Wu, F. et al. 2022. Reorganization of Asian climate in relation to
Tibetan Plateau uplift. - Nat. Rev. Earth Environ. 3: 684–700.
Zhang, D. et al. 2008. Rates of litter decomposition in terrestrial
ecosystems: global patterns and controlling factors. - J. Plant Ecol. 1:
85–93.
Zhu, M. et al. 2019. The role of topography in shaping the spatial
patterns of soil organic carbon. - Catena 176: 296–305.