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Text S1. Bayesian Theory and Sampling 

The two main differences between Bayesian and classical statistical methods are, 

firstly, that Bayesian methods consider the parameters in the model as random variables, 

and the random distribution of the parameters can be calculated by Bayesian formulas, and 

secondly, that Bayesian methods can take into account not only the sample information, 

but also the subjective a priori information of the parameters. Under the Bayesian 

framework, given the data and physical model, the probability of the parameters in the 

model can be expressed as: 

𝑝(𝜃|𝑑𝑎𝑡𝑎) =
𝑝(𝜃)𝑝(𝑑𝑎𝑡𝑎|𝜃)

𝑝(𝑑𝑎𝑡𝑎)
(1) 

 In the Bayesian framework, 𝑝(𝜃) represents the prior probability distribution 

of the parameter 𝜃, reflecting the initial beliefs about the parameter before any 
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experimental data is obtained. When there is little knowledge about the parameter, 

an uninformative prior such as a uniform distribution can be used. This type of prior 

assumes that within a specified interval, the likelihood of the parameter 𝜃 taking 

any value is the same. 𝑝(𝑑𝑎𝑡𝑎) denotes the probability distribution of the data, 

which is a normalization constant similar to the partition function in physics. This 

constant is necessary for sampling from the posterior distribution 𝑝(𝜃|𝑑𝑎𝑡𝑎), but it 

does not directly affect the sampling process and therefore does not require special 

attention. 𝑝(𝜃|𝑑𝑎𝑡𝑎)  is the posterior probability distribution, describing the 

probability of the parameter 𝜃  after observing the experimental data. This 

distribution is obtained by updating the beliefs about the parameter through the 

combination of the prior distribution 𝑝(𝜃) and the likelihood function 𝑝(𝜃|𝑑𝑎𝑡𝑎)The 

likelihood function 𝑝(𝑑𝑎𝑡𝑎|𝜃) represents the probability of observing the 

experimental data given the model parameters 𝜃. It is commonly assumed that the 

error for a single data point follows a normal distribution, which means the 

likelihood function can be written as: 

𝑝(𝑦𝑖|𝜇𝑖̃; 𝜎𝑖) =
1

√2𝜋𝜎𝑖

𝑒
−

(𝑦𝑖−𝜇𝑖̃)2

2𝜎𝑖
2 (2) 

𝑝(𝑑𝑎𝑡𝑎|𝜃) = ∏ 𝑝(𝑦𝑖|𝜇𝑖̃; 𝜎𝑖) (3) 

The uncertainty of a parameter is associated with the experimental data and its error 

and model. 𝑦𝑖 is a single experimental data point, 𝜇𝑖̃ represents the physical true value, and 

𝜎𝑖 is the corresponding error. 𝜇𝑖̃ is usually replaced by the parameter-containing physical 

model, 𝜇(𝜃), in performing the uncertainty quantification, and thus 𝜎𝑖 should contain the 

model error, the experimental measurement error, and the random error. The model error 

we consider negligible if the model is sufficiently correct and reasonable. Under the 

assumption that the experimental data points are all considered to be independent, the total 

calibration data likelihood function 𝑝(𝑑𝑎𝑡𝑎|𝜃) is the product of the likelihood functions of 

a series of individual calibration data points. 

The above describes the calculation of the posterior distribution of the parameters in 

the model, i.e., the parameter uncertainty, in the case of a physical model with given 

calibration data. Usually for parameter uncertainty quantification, it is implemented by 

sampling the Markov-chain Monte Carlo (MCMC) method. In this work, we use the 
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python-emcee package to sample from the posterior distribution 𝑝(𝜃|𝑑𝑎𝑡𝑎), which has 

been used many times in published projects in many astrophysical neighborhoods. emcee 

is computationally much more efficient and convergent than the standard MCMC method 

(Metropolis–Hastings) for sampling complex distorted probability distribution functions, 

due to the use of affine transformation model, which also conveniently allows multi-core 

CPUs to execute it in parallel. 

Text S2. Treatment of Phase Boundaries 

When dealing with multi-phase equations of state, the best way is to use the piece of 

data on the phase boundary to constrain the parameters in the model. Since the 

experimental data we generally measure are the two experimental variables of pressure 𝑃, 

temperature 𝑇, the usual practice is to use the inverse solved 𝑃(𝑇) or 𝑇(𝑃) function based 

on the equality of Gibbs free energies of the two phases on the boundary, or the equality 

of pressures and temperatures, which need to be solved inversely, and then further adding 

this constraint to the calculation. Of course, there are other approaches, Beth A. Lindquista 

and Ryan B. Jadrich were doing a parametric uncertainty analysis of the equation of state 

for carbon, and they derived a probability from Boltzmann statistics that could turn the 

points on the phase boundary into a classification problem, again with good results. In our 

operation, since there are more phases of iron, we still used the coexistence line model, but 

we did not invert the solution to solve for the functional relationship between pressure and 

temperature, which would also reduce the time spent. Instead, we changed our vision and 

added the equation constraints to the Bayesian approach to perform it.  

Admitting that the experimental data all obey a Gaussian distribution, the great 

likelihood estimation, weighted least squares, and the Bayesian maximum probability 

estimation without prior information to obtain the optimal parameters should be the same 

from the point of view of the calibration data for the model parameters. In computing the 

weighted least squares. 

∏ 𝑝𝑦𝑖 = ∏
1

√2𝜋𝜎𝑦𝑖

𝑒
−

(𝑦𝑖−𝜇(𝜃,𝑥𝑖))
2

2𝜎𝑦𝑖
2

(4) 

 

∑
(𝑦𝑖 − 𝜇(𝜃, 𝑥𝑖))

2

2𝜎𝑦𝑖
2

(5) 
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𝑥𝑖，𝑦𝑖 experimental measurements corresponding to the independent variable and the 

dependent variable measurements corresponding to it，the experimental data and the 

model if they can be perfectly matched, there is no error, the second equation above the 

experimental measurements substituted into the calculation should be 0. That is, if we write 

down 𝑦𝑖 − 𝜇(𝜃, 𝑥𝑖) = 0, then 𝑓𝑖= 0, if we consider that there error, then it is not 0. In fact, 

this means that the magnitude of the second equation above is able to reflect the magnitude 

of the difference between the computed value of the model (which can also mean or the 

magnitude of the difference between 𝑓𝑖 and 0) and the experimental value. If we do some 

complicated mathematical deformation or calculation of the equation 𝑦𝑖 − 𝜇(𝜃⃗, 𝑥𝑖) = 0, to 

get another equation for example written as 𝐹𝑖(𝑦𝑖, 𝜃⃗, 𝑥𝑖) = 0, similarly 𝐹𝑖 will be constant 

equal to 0 when the experimental measurements are substituted into the calculation without 

taking any error into account, and if there is any more error, the experimental measurements 

substituted into the calculation 𝐹𝑖 is not 0. Similarly the size of the difference between 

𝐹𝑖  and 0 reflects the size of the difference between the experimental calibration data and 

the model calculation. That is, the constraints on the parameters in the second equation 

above are equivalent to the weighted least squares between the lower 𝐹𝑖and 0, as follows: 

∑
(𝐹𝑖(𝑦𝑖, 𝜃, 𝑥𝑖) − 0)2

2𝜎𝐹𝑖
2

(6) 

 

Analogously the likelihood function can be obtained as: 

𝑝𝐹𝑖 =
1

√2𝜋𝜎𝐹𝑖

𝑒
−

(𝐹𝑖(𝑦𝑖,𝜃⃗⃗⃗,𝑥𝑖)−0)
2

2𝜎𝐹𝑖
2 (7) 

 

For the consideration of which 𝜎𝐹𝑖, to give a special example, 𝐹𝑖(𝑦𝑖, 𝜃⃗, 𝑥𝑖) = 𝑓𝑖 = 𝑦𝑖 −

𝜇(𝜃, 𝑥𝑖), that is, there is no mathematical manipulation (identity operation) of the above 

equation of 𝑦𝑖 − 𝜇(𝜃，𝑥𝑖) = 0, and obviously we only need to calculate 𝜎𝐹𝑖 by means of 

error transmission: 𝜎𝐹𝑖 = 𝜎𝑓𝑖 = √(
𝜕𝑓𝑖

𝜕𝑦𝑖
∆𝑦𝑖)2 = 𝜎𝑦𝑖 .Substituting these into 𝑝𝐹𝑖 , we find 

that 𝑝𝐹𝑖=𝑝𝑦𝑖. We therefore generalize the idea a bit to fit the deformation of the equations, 

to compute 𝜎𝐹𝑖 by means of error transfer. in a way that is sufficient. This idea is equivalent 

to considering 𝐹𝑖(𝑦𝑖, 𝜃⃗, 𝑥𝑖) as still obeying a normal distribution, treating it as an indirectly 
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measured quantity, and 0 as a model theoretical computational value, and so again correctly 

taking into account the uncertainty introduced by the experimental measurements. 

The mathematical form of the physical model is deformed and still retains the 

important information before the deformation. The mathematical essence of this is that 

when performing Monte Carlo sampling, or weighted least squares, and given the 

parameter 𝜃⃗ (at this point you can think of 𝐹𝑖(𝑦𝑖, 𝜃, 𝑥𝑖) as an indirect measure of 𝑦𝑖) we are 

going to go ahead and calculate equation (4) or equation (5). However, our approach is to 

use equation (6) and equation (7) to replace the computation of equation (5) and equation 

(4). Probabilistically, the direct and indirect measures correspond to the same value of the 

random variable in the sample space, and must have 𝑝𝐹𝑖 = 𝑝𝑦𝑖 , so this substitution is 

possible. However, we must be clear that for which 𝜎𝐹𝑖is considered it is estimated by error 

transmission, strictly speaking 𝜎𝐹𝑖 = |
𝐹𝑖(𝑦𝑖,𝜃,𝑥𝑖)

𝑦𝑖−𝜇(𝜃,𝑥𝑖)
𝜎𝑦𝑖|, so this estimate is quite conservative. 

Another point is that this is itself an optimization tool, and after the mathematical form is 

morphed, the objective function is transformed from 𝑓𝑖 to 𝐹𝑖, and the problem of finding 

the extremes of equation (4) and equation (5) is transformed into the problem of finding 

the extremes of equation (7) and equation (6), resulting in the optimal parameters to be 

different from the original due to the fact that the estimation of  𝜎𝐹𝑖 is passed through the 

error, but is not rigorous (with respect to the specific mathematical form). Experimentally, 

however, this practice is common and still gives good estimates of 𝜎𝐹𝑖. 

When dealing with the EOS boundary problem, based on the equality of the two-phase 

Gibbs free energies, we do not have to invert the solution to obtain the 𝑃(𝑇) or 𝑇(𝑃) 

function. 𝐹𝑖(𝑦𝑖, 𝜃⃗, 𝑥𝑖) the corresponding function is the difference between the Gibbs free 

energies of the two neighboring phases 𝐺𝑎  (𝑃𝑖, 𝑇𝑖)  − 𝐺𝑏 (𝑃𝑖, 𝑇𝑖), with 𝑎, 𝑏 marking the two 

neighboring phase regions, 𝑦𝑖 , 𝑥𝑖  corresponds to 𝑃𝑖 , 𝑇𝑖 . From 𝐹𝑖(𝑦𝑖, 𝜃⃗, 𝑥𝑖) , 𝑦𝑖, 𝑥𝑖  are of 

comparable status, and it might be possible to consider the error in both the independent 

and dependent variables by means of error transfer, but we only considered the error in the 

pressure data. 

Additionally, concerning the constraints on the liquid shock temperature, one can 

resort to the Rankin-Hugoniot equation: 
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𝐸𝐻(𝑉𝐻, 𝑇𝐻) − 𝐸0(𝑉0, 𝑇0) −
1

2
(𝑃𝐻 + 𝑃0)(𝑉0 − 𝑉𝐻) = 0 

Here, 𝐸, 𝑃, 𝑉, 𝑎𝑛𝑑 𝑇 represent internal energy, pressure, volume, and temperature, 

respectively. Subscript 𝐻 denotes a point along the Hugoniot curve, while subscript  

0 indicates the initial state. However, the starting point for iron is the bcc structure, 

and we did not directly address the internal energy of bcc iron but started with the 

internal energy of liquid iron at the melting point, then subtracted the experimentally 

measured enthalpy difference (1.3 kJ/g) (Anderson & Ahrens, 1994) to determine  

𝐸0(𝑉0, 𝑇0) for bcc iron. 

𝐸0(𝑉0, 𝑇0) = 𝐸𝑏𝑐𝑐 (
1

7.85 𝑔/𝑐𝑚3
, 300 𝐾) = 𝐸𝑙𝑖𝑞𝑖𝑢𝑑 (

1

7.019 𝑔/𝑐𝑚3
  ,1811 𝐾) − 1.3 𝑘𝑗/𝑔 

Substituting into the above Rankin-Hugoniot  equation: 

𝐸𝑙𝑖𝑞𝑖𝑢𝑑(𝑉𝐻, 𝑇𝐻) − 𝐸𝑙𝑖𝑞𝑖𝑢𝑑(
1

7.019
, 1811) + 1.3 −

1

2
(𝑃𝐻 + 𝑃0)(𝑉0 − 𝑉𝐻) = 0 

The left-hand side of the above equation can be considered an indirect measured 

quantity, and its error can be estimated using error propagation methods. 

Alternatively, without solving for the temperature explicitly, one can incorporate 

probabilistic constraints directly, thereby accelerating calculation speed. 

Text S3. Quantitative Details of Implementation 

There are some details that we must elucidate when sampling and quantifying the 

parameters in the equation of state of iron in a Bayesian framework: 

 First, In our research, we employed the equation of state model put forth by 

Dorogokupets et al., with the detailed aspects of this model accessible in pertinent literature. 

For body-centered cubic (bcc) structured iron, we specified a Curie temperature of 1043 K 

and assigned an average magnetic moment per atom of 𝐵0 =  2.22; these values were 

considered fixed parameters and not subject to optimization within the model. Within the 

solid phase, we characterized the thermodynamic properties of each atom using a set of ten 

parameters. Recognizing the entropy change that occurs between the solid and liquid states, 

we incorporated an extra parameter when describing the liquid phase, thus necessitating 

the use of eleven parameters for the liquid phase representation. With the aim of ensuring 

that the model could relatively accurately describe the thermodynamic behavior of iron 

under high-temperature and high-pressure conditions, we designated the hexagonal close-
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packed (hcp) structure as the reference phase region where the potential energy is zero. 

Throughout the entire model development process, we refrained from introducing any 

additional empirical parameters. Consequently, the modeling endeavor encompassed a 

total of 40 parameters in aggregate. By synergistically leveraging these parameters, we 

aimed to construct a model that would precisely reflect the thermodynamic characteristics 

of iron, particularly under extreme conditions. 

Second, In our study, due to the absence of specific prior knowledge regarding the 

model parameters, we opted for a general prior distribution—a uniform distribution— 

which served as a preliminary assumption for these parameters. To accelerate the sampling 

process and swiftly enter the burn-in period, we initially utilized the Python-emcee package 

to conduct sampling estimates on individual phases. This initial step provided us with a 

rough outline of the plausible parameter ranges. Subsequently, we took the high-probability 

sampled values obtained from this first stage as the starting inputs for the parameter chains 

across all four phase regions, thereby conducting joint quantitative sampling for all phases. 

Additionally, we also considered employing the parameter values derived from previous 

experimental research conducted by Dorogokupets et al. as the starting points for our 

sampling, further enhancing the effectiveness and reasonableness of the sampling 

procedure. 

        Third, In this work, we use the python-emcee package to sample from the posterior 

distribution 𝑝(𝜃|𝑑𝑎𝑡𝑒), which has been used many times in published projects in many 

astrophysical neighborhoods. Emcee (Foreman-Mackey et al., 2013) is computationally 

much more efficient and convergent than the standard MCMC method (Metropolis–

Hastings) for sampling complex distorted probability distribution functions, due to the use 

of affine transformation models, which also conveniently allows multi-core CPUs to 

execute it in parallel. I used the mixed sampling from the Python-emcee package for 

DEMove, and DIMEMove (Boehl, 2022) the ratio corresponding to the two types of moves 

is (0.5:0.5), because the hybrid moves are much better than the default ones. Regarding the 

convergence analysis of the sample chain, emcee authors give a conservative estimate of 

about greater than 50 times the autocorrelation time step, we sampled the samples obtained 

to calculate the autocorrelation time of 4,000 steps, a total of 200,000 steps of sampling. 
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       Fifth, for the case on the boundary, our data for the hcp-liquid boundary comes from 

the article (Li et al., 2020), which has more accurate thermometry data relative to the others. 

For the fcc-hcp-liquid boundary the data comes from the article (Morard et al., n.d.). For 

the bcc-fcc, bcc-hcp, and bcc-liquid boundary data read from articles (O. L. Anderson, 

1986; Kaufman et al., 1963; Johnson et al., 1962). 

Text S4. Probability Distribution of Parameters and Correlation Coefficients 

Between Parameters 

After obtaining the simulation results, the direct visualization of a 40-dimensional 

posterior distribution is inherently challenging; consequently, we leveraged the Python 

library Seaborn to plot kernel density estimates for each individual parameter’s 

marginalized distribution, thereby depicting their probability density functions in the Fig.1 . 

Fig.2 this plot represents a symmetric correlation matrix of 40 parameters within a 

multiphase equation of state, where red signifies positive correlation and blue indicates 

negative correlation; the darker the color, the stronger the correlation. Most pairs of 

strongly correlated parameters are found within the same phase, as evidenced by the 

diagonal blocks, for instance, in the bcc phase, 𝑉0 and 𝐾 exhibit strong positive correlation, 

while in the hcp phase, 𝐾  and 𝑉0 , as well as 𝐾′ show marked negative correlations. 

However, there also exist noteworthy inter-phase relationships where some parameters 

display significant correlations across different phases. For example, it can be observed 

that the Einstein characteristic temperature parameter Θ0 and the reference energy 𝑈0share 

a positive correlation between the bcc and fcc phases. This could imply that data at phase 

boundaries link these parameters across phases. This scenario suggests that the model’s 

parameters are not mutually independent. The dependencies among the parameters must 

be taken into account to accurately reflect the underlying relationships in the model. 

However, we obtained sample values through sampling. After plugging in 10,000 samples 

into the posterior probability function, we found the parameter values corresponding to the 

maximum value of the posterior function, which are treated as the Maximum Posterior 

Probability (MPP) estimates. These estimated values are listed in the following Table 1. 
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Table 1. Maximum Posterior Probability (MPP)  estimate of 1000 sets of parameters. 

 

 𝑏𝑐𝑐 𝑓𝑐𝑐 ℎ𝑐𝑝 𝑙𝑖𝑞𝑢𝑖𝑑 

𝑉0（𝑐𝑚3/g） 0.1267473544 0.1239622495 0.1210535874 0.1424706171 

𝐾0(𝐺𝑝𝑎) 163.66348004 147.24377837 156.07389919 78.950276587 

𝐾0
′ 5.5060150605 4.5688650309 5.6782779899 6.0465579669 

Θ0(𝐾) 283.60896417 199.17877870 217.61535001 229.14705084 

𝛽 1.1348028698 -0.1632751972 -0.0509793421 0.3357194740 

𝛾0 1.6041671999 2.1364013187 2.0599424899 2.1744112631 

𝛾∞ -0.364118620 -0.4110305217 0.18389759162 -2.8865018184 

𝑒0(10−6𝐾−1) 170.81443981 143.716252101 65.0590856591 172.22209539 

𝑚 1.9272464163 1.39424465306 -0.9874161768 2.0973388146 

𝑈0(𝑘𝐽/𝑔) -0.0960101266 -0.0060216531 0 2.0383567906 

𝛼     -1.9126697751 
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Figure 1. Plot kernel density estimates for each individual parameter’s marginalized 

distribution for 40-dimensional parameters. 

 



 

 

11 

 

 
Figure 2. Correlation coefficients between 40-dimensional parameters in the multiphase 

equation of state for iron. 

Text S5. Comparison of Computed and Experimental Values of Relevant 

Thermodynamic Quantities 

The Fig.3 shows comparison of the calculated curve of heat capacity as a function of 

temperature under 0.1 MPa conditions with experimental data (Desai, 1986). It can be seen 

that our calculated results for the bcc structure are basically consistent with the 

experimental data , but the experimental data are significantly higher than our calculated 

data at the Curie temperature of 1043 K, which may be due to the fact that the mathematical 

model that describes the process of the ferromagnetic transition is still not precise enough. 

The calculated hot melt of the Fcc structure is in good agreement with the experimental 

data. of the heat capacity is in better agreement with the experimental data. The Fig.4 

calculates the thermal expansion coefficients of iron in both bcc and fcc structures at a 

pressure of 0.1 MPa. The represent reference data (Novikova, 1974; Lu et al., 2005) from 

the article (Dorogokupets, 2017). As observed from the graph, the experimental data 

slightly exceed the calculated results, which may be due to the lack of experimental 

constraints on the thermal expansion coefficient for the fcc structure during the simulation 

process. The Fig.5 shows the comparison of the isothermal pressure lines calculated using 
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100 sets of parameters for solid phases with the corresponding experimental data. It can be 

seen that the calculation results can well reproduce the data for bcc-Fe, hcp-Fe at 15 K, 

bcc-Fe at 300 K, hcp-Fe at 300 K, fcc-Fe at 1073 and 1273 K (Nishihara et al., 2012). And 

like the melting curve, the uncertainty range of the calculated isothermal pressure lines is 

very small. 

 
Figure 3. The figure illustrates the comparison of the calculated curve of heat capacity as 

a function of temperature at 0.1 MPa conditions using 100 sets of sample parameters 

against experimental data (Desai, 1986); only a portion of the experimental data is 

presented here. 
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Figure 4. In this study, under 0.1 MPa conditions, the thermal expansion coefficients for 

bcc-Fe, fcc-Fe, and hcp-Fe structures have been calculated utilizing 100 sets of sample 

parameters. These computed results are intricately compared with the reference data 

furnished by Novikova (1974) and Lu et al. (2005), as illustrated within this figure.  
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Figure 5. Comparison of the isothermal pressure lines calculated using 100 sets of 

parameters for solid phases with the corresponding experimental data (Dewaele & 

Garbarino, 2017; Liu et al., 2013; Nishihara et al., 2012; Fei et al., 2016) 


