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Introduction 16 

This supporting information provides a more detailed description (Text S1, Figure S1) of the Process 17 
Attribution algorithm presented in the main text in Chapter 2.3. Additionally, we provide two 18 
supporting figures for the discussion in main text section 4.2. Figure S2 illustrates the correlations of 19 
d-excess with contributions of moisture uptake from sea-ice dominated regions and Figure S3 shows 20 
the relationship between d-excess and RHsst at the evaporative source regions. Finally, in text S2, we 21 
include a complementary analysis where results from the isotope enabled general circulation model 22 
ECHAM6-wiso are compared to the isotope observations and the process attributions obtained from 23 
ERA5 fields. The results of the analysis are presented in Figure S4, which is directly comparable to 24 
Figure 2 in the main text.  25 

 26 

Text S1 27 

S1.1 Process attribution 28 
In this study, we adapt the moisture attribution algorithm of Duetsch et al., (2018) in order to account for 29 
both the attribution of uptakes and losses along the airmass trajectories in the specific dry and cold 30 
environmental conditions of the Arctic region. The first step is to identify moisture changes Δ𝑞𝑞(𝑡𝑡) at a given 31 
timestep along the trajectory. This is done as follows: 32 
 33 
                                                            Δ𝑞𝑞(𝑡𝑡) = 𝑞𝑞(R𝑥𝑥(𝑡𝑡)) − 𝑞𝑞(R𝑥𝑥(𝑡𝑡 − 3ℎ))                                                 Eq.1 34 

  35 
where R𝑥𝑥(𝑡𝑡) is the position of the air parcel at time t (Sodemann et al., 2008).  36 
If |Δ𝑞𝑞(𝑡𝑡)| > Δ𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 the moisture change is attributed to a process. The threshold Δ𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 is used to reduce 37 
noise and was set to 0.01 gkg−1 in Dütsch et al. (2018). We use Δ𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = 0.001 gkg−1 to account for Arctic 38 
dry and cold conditions. The processes are assigned according to the decision tree shown in Figure S1. At 39 
humidity change between 𝑡𝑡 and 𝑡𝑡 – 3h, values of each variable, that are used in the decision tree, are 40 
averaged over R𝑥𝑥(𝑡𝑡) and R𝑥𝑥(𝑡𝑡 − 3ℎ) to account for small scale temporal and spatial variability.  41 
 42 



In case of a positive change in moisture content, the altitude of the air parcel is used to identify if the uptake 43 
happened within the BL. To account for local injections of BL moisture through moist convection and for 44 
the uncertainty of the BL parametrization of ERA5, the BL height is increased by a factor of 1.5 as in 45 
Dütsch et al. (2018). Moisture increases in the free troposphere are considered as the result of vertical or 46 
horizontal mixing. Assuming well-mixed conditions in the BL, an uptake located within the BL can be 47 
directly attributed to evaporation from the underlying source region. Surface evaporation allows up to four 48 
different source areas: land, ocean, and sea ice with and without significant lead fraction. First, evaporation 49 
from land masses and evaporation from the ocean are distinguished by using a land-sea mask. Secondly, if 50 
the air parcel is located over ocean, the sea-ice concentration is used to detect evaporation over sea ice. This 51 
process includes evaporation from open-water bodies within the ice or near sea-ice margins, over polynyas, 52 
and sublimation from the snow-covered ice surface. Since evaporation from leads is considered to 53 
contribute to enhanced local moistening of the Arctic atmosphere (Wendisch et al., 2023), we further divide 54 
our approach into sea ice with lower lead fraction or sea ice with high lead fraction using the lead fraction 55 
from the AMSR-2 data set. Due to the small-scale characteristic of leads, the average resulting values vary 56 
between 0 and 10 %. The ERA5 data does not resolve leads explicitly in the sea-ice data, so moisture 57 
uptakes due to these features are limited. Nevertheless, information about their occurrence along the 58 
trajectories can be useful for our isotope analysis.  59 
Moisture losses are due to cloud formation, precipitation by rain or snow and dew formation by vapor 60 
deposition. Here, we do not resolve if precipitation occurred and always refer to the different types of cloud 61 
formation, knowing that WAIs are often accompanied by significant precipitation (Viceto et al., 2021; 62 
Kirbus et al., 2023). A threshold of 80 % RH is used, where sub-grid scale condensation is likely to occur 63 
(Dütsch et al., 2018). If RH is below that level, moisture decreases are considered to be the result of vertical 64 
and horizontal mixing and are assigned to the process ’mixing out’. If the threshold is exceeded, clouds are 65 
likely to form. Based on the temperature of the air parcel, the resulting cloud is liquid (T > 0°C), solid (- 66 
23°C > T), or mixed-phase (-23°C<T<0°C). 67 
 68 

 69 

Figure S1: Illustration of the decision tree, which is used to indicate the process types associated with changes of q in the 70 
air parcel (modified from Dütsch et al. 2018). The parameters used here are the detected moisture change (> Δ𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚), Height 71 
(z), Boundary Layer Height (BLH), 72 
Evaporation from the surface (E), Land-Sea Mask (LSM), Sea-Ice Concentration (SIC), lead fraction, Relative Humidity (RH) 73 
and Temperature (T). If the absolute moisture change is large enough (> Δ𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚), the moisture change is allocated to processes 74 
associated with uptakes on the upper branch or processes associated with losses on the lower branch. If > Δ𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 is not exceeded, 75 
q is considered to be constant. The conditions written along the branches indicate the thresholds used to assign a process. 76 



S1.2 Moisture weighting 77 
Along its trajectory, an air parcel may experience multiple uptakes and losses. Moisture that 78 
originates from an earlier uptake of the air parcel can be fully removed from the air parcel through 79 
rain outs and cloud formation and is replaced by later uptakes. Thus, each air parcel arriving at RV 80 
Polarstern can be described as a weighted sum of previous uptakes (Sodemann et al., 2008).  81 
A moisture weighting procedure is used to calculate the contribution of each uptake to the moisture 82 
content at the target location (Dütsch et al., 2018). At the target location, the amount of moisture is 83 
defined as 𝑞𝑞n=Nfi𝑛𝑛 , with N being the timestep at target location, and is ideally equal to the observed 𝑞𝑞 84 
at this time. At any timestep 𝑛𝑛, backwards in time along an air parcel’s trajectory, the contribution to 85 
𝑞𝑞Nfi𝑛𝑛 is a fraction of its current moisture content defined as 𝑓𝑓nf𝑖𝑖𝑖𝑖. This is calculated using the following 86 
equation (Dütsch et al., 2018): 87 
                                                     𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚  · min(𝑞𝑞

𝑚𝑚

𝑞𝑞𝑛𝑛
 , 1),            where m>n                                                      Eq.1 88 

                                                     𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛 · 𝑞𝑞𝑛𝑛                                                                                                         Eq.2 89 
 90 
Multiplying 𝑓𝑓nf𝑖𝑖𝑖𝑖 with the current amount of moisture 𝑞𝑞𝑛𝑛, gives 𝑞𝑞𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓, which is defined as the amount 91 
of moisture at a given timestep 𝑛𝑛 that is preserved in the final amount of moisture at the target 92 
location. The calculation works backwards in time, thus n is decreased along the trajectory. At target 93 
location with timestep 𝑛𝑛 = 𝑁𝑁, the calculation is initialized with 𝑓𝑓 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓 = 1.  94 
In case of an uptake (𝑞𝑞𝑚𝑚/𝑞𝑞𝑛𝑛 > 1), the fraction 𝑓𝑓n𝑓𝑓𝑓𝑓𝑓𝑓 reduces 𝑞𝑞𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓 of the previous timestep. It reflects 95 
that the moisture 𝑞𝑞𝑛𝑛 now contributes less to 𝑞𝑞N𝑓𝑓𝑓𝑓𝑓𝑓, as the uptake of the next timestep 𝑚𝑚 will add 96 
additional moisture to the air parcel. In case of a moisture decrease, during precipitation or cloud 97 
formation, 𝑓𝑓nf𝑖𝑖𝑖𝑖 is described by: 98 
 99 
                                    𝑓𝑓nf𝑖𝑖𝑖𝑖 = 𝑓𝑓 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓 · (𝑞𝑞𝑚𝑚/qn)                       where 𝑚𝑚 > 𝑛𝑛,  and 𝑞𝑞𝑚𝑚 < 𝑞𝑞𝑛𝑛                                     Eq.3 100 

 101 
Combining Eq.1 and Eq2, it results that 𝑞𝑞𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓 before a moisture decrease is equal to the one of the 102 
next timestep 𝑞𝑞m𝑓𝑓𝑓𝑓𝑓𝑓, and it describes exactly that part of 𝑞𝑞𝑛𝑛 which ’survives’ events of precipitation 103 
and cloud formation. 104 
The sum of all changes of 𝑞𝑞𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓 is defined as the explained moisture: 105 
 106 
                                                                              𝑞𝑞𝑒𝑒𝑒𝑒 𝑝𝑝 =∑ 𝛥𝛥𝛥𝛥𝑁𝑁−1

𝑛𝑛=0 nfin                                                                                                                    Eq.4 107 
 108 

where 𝑁𝑁 is the total number of timesteps, (here 𝑁𝑁=40; 5 days x 24h/3h). If the majority of the 109 
moisture content at the target location was uptaken later than 5 days before the arrival, 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒 is close 110 
to 𝑞𝑞𝑁𝑁. In the opposite case, if the majority of the uptakes happened earlier than 5 days before arrival 111 
at the target location and only a few uptakes are tracked along the trajectory, 𝑞𝑞𝑞𝑞𝑞𝑞 𝑝𝑝 is low 112 
compared to 𝑞𝑞𝑞𝑞. 113 
Based on the identified processes and the weights 𝑞𝑞𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓, the weighted sum of all moisture exchanges 114 
along the trajectory is calculated based on the weighting presented in Sodemann et al (2008). The 115 
changes are integrated along the trajectory (𝑛𝑛 → 𝑁𝑁) for each process (𝑘𝑘) separately. 116 
 117 

                                                                      Δqtotal= ∑ (
𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛

𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓
𝑁𝑁

𝑁𝑁−1
𝑛𝑛=0  𝛥𝛥𝑞𝑞𝑛𝑛,𝑘𝑘)                                                                    Eq.5 118 

Here, 
𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛

𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓
𝑁𝑁  is the fraction of moisture at timestep n, which is still contained at the target location and 119 

is used as the weighting factor. Finally, the relative contribution of each process to the total amount 120 
of moisture exchanges is calculated as follows: 121 

 122 
                                                               Δqkrelative= |Δqktotal|/ ∑ |𝛥𝛥𝛥𝛥𝑁𝑁−1

𝑛𝑛=0 n|                                                           Eq.6 123 



 124 
 125 

Figure S2: Relationship between the contribution of sea-ice evaporation and d-excess, including both sea ice with high lead 126 
fraction and sea ice with lower lead fraction with the respective regression lines. The equation for the regression line of sea ice 127 
with low lead fraction is written at the top right.  128 
 129 

 130 
 131 

Figure S3: Relationship of d-excess to RH𝑆𝑆𝑆𝑆𝑆𝑆 for the second peak of the summer case (WAI2a). The color scale indicates the 132 
local humidity at RV Polarstern. A linear regression is applied. The relationship has a significant r value (p<0.05) and the 133 
equation is given at the top right. 134 
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Text S2 139 

The process attribution analysis based on ERA5 and presented in the main manuscript was replicated 140 
based on meteorological fields from an ECHAM6-wiso simulation with explicit isotope diagnostic 141 
(Werner et al., 2011).  142 
Here, we present the results from a single atmosphere model simulation performed at a horizontal 143 
grid size of ∼0.9 × 0.9 ° and 95 vertical levels (T127L95) (Cauquoin and Werner, 2021). To ensure 144 
that the simulated large-scale atmospheric flow is modelled in agreement with the ECMWF reanalysis 145 
data, the entire atmospheric column was nudged every 6 h to ERA5 surface pressure, temperature, 146 
vorticity and divergence fields. The monthly mean SST and sea-ice fields from the corresponding 147 
ERA5 reanalysis have been applied as ocean surface boundary conditions.   148 
 149 
S2.1 Process attribution based on ECHAM6-wiso fields: the winter case  150 
The process attribution, based on ECHAM6-wiso instead of ERA5 fields, yields very similar results 151 
for the uptakes (Figure S4a-b). Evaporation from sea ice is slightly larger and contributions from 152 
‘mixing-in’ are slightly lower compared to ERA5, but the contributions from ocean and land 153 
evaporation are nearly identical. However, the processes associated with moisture losses exhibit 154 
significant differences. ECHAM6-wiso shows a high contribution of losses caused by ‘mixing-out’, and 155 
a smaller contribution of ice- and mix-phased cloud formation, especially during cold phases. The 156 
general shift to mixed-phase cloud formation with the beginning of WAI1 is however captured.  157 

ECHAM6-wiso modelled isotopes (Figure S4d) reveal that the simulated temporal variability of both 158 
δ18O and d-excess is underestimated (std δ18O = 1.23 ‰, std d-excess = 4.14 ‰) with respect to the 159 
observations (std δ180 = 2.92 ‰, std d-excess = 5.83 ‰). Both variables appear largely 160 
overestimated and insensitive to changes in temperature and humidity.  Only after the intrusion on 161 
Feb 19, simulated δ18O aligns with the observations. Similarly, during the intrusion, ECHAM6-wiso 162 
simulates a d-excess peak along with the peak in temperature, and the stable d-excess signal during 163 
the intrusion agrees with the observations.  164 

 165 
S2.2 Process attribution based on ECHAM6-wiso fields: the summer case  166 
Nearly equal process contributions for uptakes are shown by the ECHAM6-wiso simulation as 167 
compared to ERA5 (Figure S4e-f). The dominant role of mixed-phase cloud formation in cold phases 168 
and the transition to liquid cloud formation during the intrusion are also reproduced. Unlike for 169 
ERA5, there is a persistent contribution of ‘mixing-out`, accounting for up to 20 % of the moisture 170 
exchanges during the WAIs. This additional process contributes on account of the mixed-phase and 171 
liquid cloud formation in ERA5. ECHAM6-wiso reproduces day-to-day variations in specific humidity 172 
at POL in agreement with the measurements, including the changes associated with the WAIs, but 173 
falls short in capturing small-scale variability such as the two humidity peaks on Sep 19 (Figure S4g).  174 

Modelled 𝛿𝛿18O and d-excess values of ECHAM6-wiso (Figure S4h) follow the major evolution of the 175 
observations but their simulated variability is underestimated (ECHAM-wiso: std δ18O = 3.90 ‰, std 176 
d-excess = 3.67 ‰; Picarro: std δ18O = 5.49, d-excess = 6.60 ‰), resulting in large offsets in the 177 
absolute values. The δ18O offset is larger during WAIs (-10 ‰) than during cold-phases (+5 ‰). In 178 
contrast to the winter intrusion, large absolute offsets in modelled and measured d-excess are found 179 
in the two simulated WAI2 (+10-15 ‰), and better results are obtained during cold phases, although 180 
variability is not accurately simulated. The anticorrelation between δ18O and d-excess is generally 181 
captured (r = -0.92), but this relationship is weaker during the first WAI, where modelled d-excess 182 
values remain stable around +10 ‰. 183 



 184 
Figure S4: Results of the process attribution diagnostic for the winter case (left) and summer case (right) based on ECHAM6-185 
wiso (a-e), and compared to the results obtained from ERA5 fields (b-f). WAI1, WAI2a and WAI2b are highlighted by vertical 186 
black lines. In the middle panels (c-g), modelled and observed local humidity at POL are shown. The lowest panels (d-h) present 187 
observed local d-excess and 𝛿𝛿 18O as measured by the CRDS onboard POL and the near-surface corresponding variables as 188 
modelled by ECHAM6-wiso. 189 
 190 

S2.3 Considerations on model biases 191 
The process attribution only considers humidity, RH and temperature to determine cloud formation 192 
and cloud type, which limits a detailed interpretation. Nonetheless, it is interesting to note that 193 
ECHAM6-wiso correctly simulates the total vapor mixing ratios (Figure S4c-g), but the lack of 194 
moisture loss due to cloud formation is balanced by the process ’mixing out’. Moisture removals are 195 
attributed to ‘mixing out’ rather than could formation if RH is underestimated by ECHAM6-wiso. This 196 
is in contradiction with Kretzschmar et al., (2019) who found that ECHAM6 generally overestimates 197 
RH in the Arctic and has a positive bias in liquid cloud formation. However, comparing modelled and 198 
observed RH, we found an underestimation of RH in ECHAM6-wiso, along the 80% RH threshold.  199 
ECHAM6-wiso calculates grid cloud fraction based on grid mean RH, giving the basis for the 200 
calculation of cloud ice and liquid water content (Giorgetta, 2013). Isotope fractionation in clouds are 201 
then modelled as equilibrium fractionation which depends on the ice and liquid phase within the 202 
cloud. Hence, wrong estimates of cloud water contents could account for underestimations of 𝛿𝛿18O 203 
values. For the representation of d-excess in the Arctic, the parametrization of ice growth under super 204 
saturation is key. ECHAM6-wiso does not allow the explicit simulation of supersaturation over ice 205 
and parameterizes the Bergeron-Findeisen process via a threshold in cloud ice water (Giorgetta, 206 
2013). Kretzschmar et al., (2019) improved the cloud representation significantly by adding such 207 
supersaturation process with respect to ice. However, this improvement is not included in the default 208 
model release of ECHAM6-wiso used in this study. In conclusions, all these biases, including an over-209 
estimation of liquid water content in ECHAM6-wiso, underestimations of RH linked to cloud water 210 
contents, and positive temperature biases in ERA5 fields used for the nudged ECHAM6-wiso 211 
simulation used in this study, are likely to cause the ECHAM6-wiso model offsets in d-excess and in 212 
𝛿𝛿18O. 213 


