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Abstract 15 

Recent seismic tomography studies have shown that distinct low-velocity anomalies exist 16 

below subducting slabs in many subduction zones and these anomalies are interpreted as a hot 17 

plume from the lower mantle. However, how high the temperatures in the sub-slab low-velocity 18 

anomalies are still unclear. Here, we conduct receiver function analysis and estimate the 19 

horizontal temperature variation in the mantle transition zone by determining the depth variation 20 

of 410 and 660 discontinuities beneath northeastern Japan. The obtained results show that the 21 

depth of the two discontinuities changes little, which suggests no distinct thermal heterogenies 22 

over the study area. Therefore, we infer that the major cause of the sub-slab low-velocity 23 

anomaly is attributable not to high-temperature anomaly but to the presence of small amount 24 

(~0.2 wt%) of hydrous minerals, which can explain the sub-slab low-velocity anomalies and the 25 

flat 410 and 660 discontinuities. 26 

Plain Language Summary 27 

Recent studies suggested that the seismic low-velocity zones exist under the subducting slab in 28 

many subduction zones. This low-velocity zones are interpreted as a hot upwelling flow from the 29 

lower mantle. However, how high the temperatures in this plume are still unclear. Here, we 30 

conduct receiver function analysis and estimate the depth variation of 410 and 660 seismic 31 

velocity discontinuities beneath northeastern Japan. The 410 and 660 discontinuities are 32 

associated with the phase transformations from olivine to wadsleyite at 410 km depth and from 33 

ringwoodite to bridgmanite at 660 km depth, respectively. Since the depths of the two 34 

discontinuities are sensitive to the temperature variations in the mantle transition zone, precise 35 

estimation of the depths of the 410 and 660 discontinuities can provide quantitative estimation of 36 

the thermal anomaly. The obtained results shows that the depth of the two discontinuities 37 

changes little, which suggests no distinct thermal heterogenies over the study area. Therefore, we 38 

infer that this low-velocity zone reflects wet upwelling flow rather than hot upwelling flow. 39 

1 Introduction 40 

Recent seismic tomography analyses have shown the existence of distinct low-velocity 41 

anomalies beneath subducting slabs in many subduction zones (Fan and Zhan 2021), including 42 

Japan (Asamori and Zhao 2015; Liu and Zhao 2016a; Liu and Zhao 2016b), South America 43 

(Portner et al., 2017; Lee et al., 2023), Cascadia (Hawley et al., 2016; Bodmer et al., 2018; Zhao 44 

and Hua, 2021; Liang et al., 2023), and Sumatra subduction zones (Huang et al., 2015). 45 

Geodynamic modeling of plate subduction and mantle convection suggests that the sub-slab low-46 

velocity anomalies reflect the downwelling asthenosphere materials originating either from a 47 

weak, buoyant layer under the oceanic lithosphere (Hawley et al., 2016) or from hotspot 48 

materials entrained by slab subduction (Portner et al.,2017; Bodmer et al., 2018; Zhao and Hua 49 

2021). In contrast, Dai et al. (2023) have shown a local uplift of the 660 discontinuity beneath 50 

the Cascadia subduction zone using receiver function (RF) analysis and suggested that the sub-51 

slab low-velocity anomaly reflects upwelling hot materials from the lower mantle. 52 

Many tele-seismic tomography analyses have shown the existence of a distinct low-53 

velocity anomaly beneath the Pacific plate of northeastern Japan, which is continuously 54 

distributed from at least 1100 km depth to ~200 km depth (Zhao 2004; Obayashi et al., 2006; 55 

Zhao 2009; Wei et al. 2012; Asamori and Zhao 2015; Wei et al. 2015; Liu and Zhao 2016a; Liu 56 

and Zhao 2016b; Wei et al., 2016). Since there are no hotspots around the Japanese Islands, the 57 
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sub-slab low-velocity anomalies are interpreted to reflect the hot upwelling mantle induced by 58 

the collapsing of the stagnant Pacific slab into the lower mantle (Zhao 2004; Zhao 2009). 59 

Obayashi et al. (2006) suggested that the sub-slab low-velocity anomaly at 410 km depth can be 60 

explained by the increases in temperatures by ~200 K. The temperature increase by ~200 K is 61 

comparable to that of hot materials originating from the lower mantle and entrained toward the 62 

410 discontinuity, which is simulated by geodynamic modeling (Morishige et al., 2010). If the 63 

sub-slab low-velocity anomaly is produced by the thermal origin as high as 200 K, the 660 64 

would be elevated by ~15 km given the Clapeyron slope of -3.2~-2.6 MPa/K (Akaogi et al.,2007; 65 

Muir et al., 2021). However, the elevation of the 660 has not yet been confirmed by 66 

seismological observations. 67 

This study conducts RF analysis using a large number of tele-seismic waveforms 68 

recorded at a dense seismological observation network in Japan to constrain the depth variations 69 

of the sub-slab 410 and 660 discontinuities. Since the 410 and 660 are associated with the phase 70 

transformations from olivine to wadsleyite and from ringwoodite to bridgmanite, respectively, 71 

the depths of the two discontinuities are sensitive to the temperature variations in the mantle 72 

transition zone. Therebefore, precise determination of the depths of the 410 and 660 can provide 73 

quantitative estimation of the thermal anomaly, which enhances our understanding of the sub-74 

slab mantle dynamics. 75 

2 Data and Method 76 

We examined 1086 events with Mw ≧ 5.5 that occurred between April 2005 to March 77 

2023 (Fig 1a). Waveforms of these earthquake were recorded at 455 Hi-net stations (Fig 1b) 78 

operated by the National Research Institute for Earth Science and Disaster Prevention (NIED). 79 

The natural frequency of seismometer is 1 Hz and waveform data are recorded with a sampling 80 

frequency of 100 Hz. After correcting for the instrument response to the waveform with the 81 

method of Maeda et al. (2011), we applied a band-pass filter (0.1-15 Hz) to the observed 82 

waveform. In the Fourier transformation, we used a time window of 163.84 s, starting 40 s 83 

before the theoretical P-wave arrival time. RFs were calculated by deconvolving the radial and 84 

transverse components from vertical components with a water level of 0.001 and a low-pass 85 

filter at 0.5 Hz. We discarded RFs with <3 signal-to-noise ratios, and finally obtained a total of 86 

216,414 RFs. RFs were migrated into a space-domain using iasp91 1D velocity model (Kennett 87 

and Engdahl 1991) with the Vectorial Receiver Function Method (Kawakatsu and Watada 2007; 88 

Kawakatsu and Yoshioka 2011) that considers the three-dimensional refraction on the dipping 89 

surface of the Pacific slab by correcting for incident and azimuthal angles of RFs. We set a 10 90 

km (horizontal) × 2 km (depth) grid along four profiles sub-parallel to the strike of the Japan 91 

trench (Fig 1a)  and employ a common conversion point stacking along each profile. We then 92 

gathered Ps amplitudes within 100 km width from each profile to produce cross-sectional images 93 

of RFs.    94 

  95 
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 96 

Figure 1. (a) Locations of Hi-net seismometers (triangles) used in this study and four profiles A, 97 

B, C and D along which we obtained receiver function images. Four line (A–D) are profiles 98 

along which we display RF imaging in Figure 2. The dotted line represents trenches and troughs. 99 

(b) Epicenter distribution of tele-seismic events used in this study. The color scale shows the 100 

focal depth of earthquakes. 101 

 102 

3 Results 103 

We observed two clear planes of positive amplitudes at ~410 km and ~660 km depths, 104 

which are interpreted as the 410 and 660 discontinuities, respectively (Fig 2a). Of note, the 410 105 

and 660 are almost flat with no large depth variation for all profiles, even though the 660 in the 106 

southern end of profiles A-C depress locally by 30-40 km. The local depression at ~660 km is 107 

considered to be the effect of the subducting cold Pacific slab (Tonegawa et al., 2005).  108 

To quantify the depth variation of the 410 and 660 obtained by RF analyses, we identified 109 

the depth of the maximum positive amplitudes within a depth range of ±40 km from each of 410 110 

and 660 km depth. We defined the discontinuity depths at horizontal distances of every 50 km 111 

(crosses in Fig 2a). The obtained result confirms that the discontinuity depths are nearly constant, 112 

and the depth variations in each of the two discontinuities are estimated to be less than ~ 10 km 113 

along all profiles (Fig 2b).  114 

  115 
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Figure 2. (a) The receiver function images along profile A, B, C, and D. Grids with more than 116 

250 RF stacks are shown, where red and blue indicate positive and negative amplitudes, 117 

respectively. The dotted lines indicate 410 km and 660 km depth. Black bar on the top represents 118 

the land area. The cross marks represent the depths of discontinuity determined from the 119 

maximum amplitudes of RFs over a horizontal span of 100 km and displayed every 50 km. (b) 120 

Histograms representing the depths of 410 discontinuity (upper panel) and 660 discontinuity 121 

(lower panel). 122 

 123 
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We performed a bootstrap test to evaluate the stability and robustness of the depths of the 124 

410 and 660. For each set of RFs, we created 200 data subsets, with each subset derived from the 125 

same number of RFs with a random resampling of the original RF data set. The result of the 126 

bootstrap test shows that the standard deviation of the depths of the 410 and 660 are both less 127 

than 2 km (Fig S1), demonstrating that the depth of the 410 and 660 km can be constrained with 128 

high accuracy. 129 

We also assessed the effect of different velocity models on the obtained RFs images, 130 

where we carried out the same analysis using two additional different velocity models, PREM 131 

(Dziewonski et al. 1981) and AK135 (Kennett et al. 1995). The obtained results yielded almost 132 

the same depth variations in the 410 and 660 for the three velocity models, suggesting that our 133 

results are robust regardless of assumed 1D velocity models. However, the absolute depths of the 134 

410 and 660 are changed by ~10 km and ~20 km, respectively for the different velocity models 135 

(Fig S2). Therefore, we focuse on the relative depth variation of the 410 and 660 along the 136 

profiles to discuss the origin of the sub-slab low-velocity anomaly. 137 

4 Discussion 138 

According to recent seismic tomography analysis, velocity perturbations of the sub-slab 139 

low-velocity anomaly are estimated to be –2~–1 % for P waves (Obayashi et al. 2006; Wei et al. 140 

2012; Wei et al. 2015; Liu and Zhao 2016) and –3~–2 % for S waves (Asamori and Zhao 2015; 141 

Wei et al., 2015; Liu and Zhao 2016a,b). Almost all the tomographic models show that the sub-142 

slab low-velocity anomaly has the depth extent of 100-150 km and extends horizontally at least 143 

1000 km in the along-arc direction. The S-wave velocity model obtained by Asamori and Zhao 144 

(2016) clearly demonstrates the existence of an inverted V-shaped sub-slab low-velocity 145 

anomaly in the mantle transition zone (Fig 3).  146 

If the sub-slab low-velocity anomaly reflects only the thermal effect, then the temperature 147 

is required to be elevated by 200–300 K using the temperature-velocity relations of dlnVp/dT = 148 

0.5– 1%/100K and dlnVs/dT = ~1%/100K in the mantle transition zone (Anderson and Isaak, 149 

1995; Civiero et al., 2019). Such high temperature anomalies would result in the depression by 150 

25–35 km for the 410 and the uplift by 25–35 km for the 660, given Clapeyron slopes of +3 151 

MPa/K (Bina and Helffrich 1994; Akaogi et al., 2007) at 410 km and –2.6 MPa/K (Akaogi et 152 

al.,2007) or –3.2 MPa/K (Muir et al., 2021) at 660 km. 153 

Fig 4 shows the relationship between the relative topography of the 410 and 660 and S-154 

wave velocity perturbation by Asamori and Zhao (2015), which are sampled every 50 km in the 155 

horizontal distance along profiles B and C (crosses in Fig 2a and Fig 3). Although Obayashi et al. 156 

(2006) suggested a temperature increase by ~200 K to explain the ~32.5 km depression of the 157 

410, it is evident from Fig 4 that the 410 is almost flat and there are no correlations between the 158 

410 and 660 topography and S-wave velocity perturbations. Our results strongly suggests that the 159 

sub-slab low-velocity anomaly cannot be explained by the high temperature anomaly only. It is 160 

noted that the RF imaging in this study does not incorporate a 3D velocity model when we 161 

convert RFs from the time domain to the depth profile. However, if we consider the local effect 162 

of the sub-slab low-velocity anomaly to produce the depth profile of RFs, the 410 would become 163 

shallower than those derived with the 1D model. Such shallow 410 contradicts the effect of high-164 

temperature anomaly, whereby we could conclude that the high temperature is not the major 165 

cause of the sub-slab low-velocity zone even if the 3D velocity model is involved in the analysis. 166 
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 167 

Figure 3. Vertical cross section of S-wave tomography along profile B and C obtained by 168 

Asamori and Zhao (2016). The red and blue colors denote low and high velocities, respectively. 169 

The black bar and cross marks are same as Fig 2. The crosses the depths of the 410 and 660 170 

derived from RF images. 171 

 172 

Another plausible cause of the sub-slab low-velocity anomaly is some degree of water 173 

contents. Mao et al. (2012) showed that water content of ~0.2 wt% can explain S-wave low 174 

velocity reduction of ~2 % observed in the mantle transition zone (Asamori and Zhao 2015; Wei 175 

et al., 2015; Liu and Zhao 2016). It is known that 1 wt% water content can shift the depth of 176 

phase transition of olivine at the 410 shallower by ~10 km (Smyth and Frost, 2002) and that of 177 

ringwoodite at the 660 deeper by 6~8 km (Higo et al., 2001; Litasov et al., 2005; Muir et al., 178 

2021). Thus, the 0.2 w% water would elevate the 410 by ~2 km and depress the 660 by ~1.5 km, 179 
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given that the uplift of the 410 and depression of the 660 are proportional linearly to the water 180 

content. The possible depth changes of 410 and 660 caused by the water content of ~0.2 wt% are 181 

below the minimum resolution of RF imaging, which is controlled by the vertical grid spacing (2 182 

km) used in this study. Therefore, we consider that the water content as small as ~0.2 wt% 183 

explains the two independent seismological observations: the amplitude of the sub-slab low-184 

velocity anomaly and the little depth variation of the 410 and 660. The inferred water content of 185 

~0.2 wt% is comparable to the water capacity of the lower mantle rock (~0.2–0.4 wt%) 186 

(Murakami et al.,2002), thereby being consistent with the observations that the sub-slab low-187 

velocity anomaly originates from the lower mantle as suggested by tele-seismic tomography 188 

studies (Zhao 2004; Obayashi et al.,2015; Zhao 2015). 189 

Figure 4. Scatter plots of the uplift of the (a) 410 and (b) 660 relative to the average depth along 190 

each of profiles B and C in Fig 1a versus S-wave velocity perturbation, which are taken from the 191 

cross marks in Figs 2 and 3. Red and blue symbols represent results for profile B and C, 192 

respectively. The dotted lines indicate the Clapeyron slope at the 410 (Bina and Helffrich 1994; 193 

Akaogi et al., 2007) and at the 660 (–2.6 MPa/K from Akaogi et al., 2007; –3.2 MPa/K from 194 

Muir et al., 2021). We assumed dlnVs/dT = 1%/ 100 K (Chiara et al., 2019) and density is 3.73 195 

g/cm
3
 at the 410 km and 3.99 g/cm

3
 at the 660 km, respectively. 196 

 197 
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5 Conclusion 198 

We determined the depth variation of the 410 and 660 discontinuities beneath 199 

northeastern Japan using RF imaging and revealed that the 410 and 660 are almost flat with no 200 

correlations with the sub-slab low-velocity anomaly. Therefore, it is unlikely that the sub-slab 201 

low-velocity anomaly results from high-temperature anomaly. We proposed that the sub-slab 202 

low-velocity anomaly corresponds to a wet plume originating from the lower mantle. The 203 

inferred water content of the plume is as small as ~0.2 wt%, which can explain both the flat 410 204 

and 660 and ~2% S-wave velocity reduction in the sub-slab low-velocity anomaly.  205 

The sub-slab wet plume model proposed in this study is different from conventional 206 

interpretations that the sub-slab low-velocity anomaly represents hot mantle materials (Morishige 207 

et al., 2010; Hawley et al., 2016; Portner et al.,2017; Bodner et al., 2018; Zhao and Hua 2021; 208 

Dai et al. 2023). Our results provide a new insight into the sub-slab mantle dynamics toward a 209 

better understanding mass circulation in the whole mantle.  210 
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