References
Akide Ndunge, O.B., Shikani, H.J., Dai, M., Freeman, B.D., Desruisseaux,
M.S., 2023. Effects of anti-tau immunotherapy on reactive microgliosis,
cerebral endotheliopathy, and cognitive function in an experimental
model of cerebral malaria. J. Neurochem. 167, 441–460.
https://doi.org/10.1111/JNC.15972
Andersen, P., Morris, R., Amaral, D., Bliss, T., O’ Keefe, J., 2006. The
Hippocampus Book. Hippocampus B. 1–852.
https://doi.org/10.1093/ACPROF:OSO/9780195100273.001.0001
Ao, C., Li, C., Chen, J., Tan, J., Zeng, L., 2022. The role of Cdk5 in
neurological disorders. Front. Cell. Neurosci. 16, 951202.
https://doi.org/10.3389/FNCEL.2022.951202/BIBTEX
Ballatore, C., Lee, V.M.Y., Trojanowski, J.Q., 2007. Tau-mediated
neurodegeneration in Alzheimer’s disease and related disorders. Nat.
Rev. Neurosci. 8, 663–672. https://doi.org/10.1038/nrn2194
Basu, J., Siegelbaum, S.A., 2015. The Corticohippocampal Circuit,
Synaptic Plasticity, and Memory. Cold Spring Harb. Perspect. Biol. 7,
a021733. https://doi.org/10.1101/CSHPERSPECT.A021733
Bk, B., Skuntz, S., Prochazkova, M., Kesavapany, S., Amin, N.D., Shukla,
V., Grant, P., Kulkarni, A.B., Pant, H.C., 2019. Overexpression of the
Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral
sclerosis phenotype in a mouse model. Hum. Mol. Genet. 28, 3175-3187.
https://doi.org/10.1093/HMG/DDZ118
Brejt, J.A., Golightly, L.M., 2019. Severe malaria: update on
pathophysiology and treatment. Curr. Opin. Infect. Dis. 32, 413–418.
https://doi.org/10.1097/QCO.0000000000000584
Bruneel, F., 2019. Human cerebral malaria: 2019 mini review. Rev.
Neurol. (Paris). 175, 445–450.
https://doi.org/10.1016/J.NEUROL.2019.07.008
Bulic, B., Pickhardt, M., Mandelkow, E.M., Mandelkow, E., 2010. Tau
protein and tau aggregation inhibitors. Neuropharmacology 59, 276–289.
https://doi.org/10.1016/J.NEUROPHARM.2010.01.016
Carroll, R.W., Wainwright, M.S., Kim, K.Y., Kidambi, T., Gómez, N.D.,
Taylor, T., Haldar, K., 2010. A Rapid Murine Coma and Behavior Scale for
Quantitative Assessment of Murine Cerebral Malaria. PLoS One 5, e13124.
https://doi.org/10.1371/JOURNAL.PONE.0013124
Clemmer, L., Martins, Y.C., Zanini, G.M., Frangos, J.A., Carvalho,
L.J.M., 2011. Artemether and artesunate show the highest efficacies in
rescuing mice with late-stage cerebral malaria and rapidly decrease
leukocyte accumulation in the brain. Antimicrob. Agents Chemother. 55,
1383–1390. https://doi.org/10.1128/AAC.01277-10
Cuadrado-Tejedor, M., Garcia-Barroso, C., Sánchez-Arias, J.A., Rabal,
O., Pérez-González, M., Mederos, S., Ugarte, A., Franco, R., Segura, V.,
Perea, G., Oyarzabal, J., Garcia-Osta, A., 2017. A First-in-Class
Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that
Rescues Hippocampal Synaptic Impairment in Alzheimer’s Disease Mice.
Neuropsychopharmacology 42, 524-539.
https://doi.org/10.1038/NPP.2016.163
Cummings, J., Lee, G., Ritter, A., Sabbagh, M., Zhong, K., 2020.
Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s Dement.
(New York, N. Y.) 6, e12050. https://doi.org/10.1002/TRC2.12050
Czapski, G.A., Gassowska, M., Wilkaniec, A., Chalimoniuk, M.,
Strosznajder, J.B., Adamczyk, A., 2016. The mechanisms regulating
cyclin-dependent kinase 5 in hippocampus during systemic inflammatory
response: The effect on inflammatory gene expression. Neurochem. Int.
93, 103–112. https://doi.org/10.1016/J.NEUINT.2016.01.005
Dai, M., Freeman, B., Bruno, F.P., Shikani, H.J., Tanowitz, H.B., Weiss,
L.M., Reznik, S.E., Stephani, R.A., Desruisseaux, M.S., 2012a. The novel
ETA receptor antagonist HJP-272 prevents cerebral microvascular
hemorrhage in cerebral malaria and synergistically improves survival in
combination with an artemisinin derivative. Life Sci. 91, 687–692.
https://doi.org/10.1016/J.LFS.2012.07.006
Dai, M., Freeman, B., Shikani, H.J., Bruno, F.P., Collado, J.E., Macias,
R., Reznik, S.E., Davies, P., Spray, D.C., Tanowitz, H.B., Weiss, L.M.,
Desruisseaux, M.S., 2012b. Altered Regulation of Akt Signaling with
Murine Cerebral Malaria, Effects on Long-Term Neuro-Cognitive Function,
Restoration with Lithium Treatment. PLoS One 7, e44117.
https://doi.org/10.1371/JOURNAL.PONE.0044117
Dai, M., Reznik, S.E., Spray, D.C., Weiss, L.M., Tanowitz, H.B.,
Gulinello, M., Desruisseaux, M.S., 2010. Persistent cognitive and motor
deficits after successful antimalarial treatment in murine cerebral
malaria. Microbes Infect. 12, 1198–1207.
https://doi.org/10.1016/J.MICINF.2010.08.006
Datta, D., Bangirana, P., Opoka, R.O., Conroy, A.L., Co, K., Bond, C.,
Zhao, Y., Kawata, K., Saykin, A.J., John, C.C., 2021. Association of
Plasma Tau With Mortality and Long-term Neurocognitive Impairment in
Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA
Netw. open 4, e2138515.
https://doi.org/10.1001/JAMANETWORKOPEN.2021.38515
Davolio, C., Greenamyre, J.T., 1995. Selective vulnerability of the CA1
region of hippocampus to the indirect excitotoxic effects of malonic
acid. Neurosci. Lett. 192, 29–32.
https://doi.org/10.1016/0304-3940(95)11600-2
Dhavan, R., Tsai, L.H., 2001. A decade of CDK5. Nat. Rev. Mol. Cell
Biol. 2, 749–759. https://doi.org/10.1038/35096019
Ding, Y., Zhang, L., Zhou, W., Lu, H., Gao, X., Li, J., Liu, J., Niu,
X., Zheng, J., 2022. Role of cyclin-dependent kinase 5 in early brain
injury following experimental subarachnoid hemorrhage. Exp. Ther. Med.
23, 147. https://doi.org/10.3892/ETM.2021.11070
Freude, S., Plum, L., Schnitker, J., Leeser, U., Udelhoven, M., Krone,
W., Bruning, J.C., Schubert, M., 2005. Peripheral hyperinsulinemia
promotes tau phosphorylation in vivo. Diabetes 54, 3343–3348.
https://doi.org/10.2337/DIABETES.54.12.3343
Gallego-Delgado, J., Basu-Roy, U., Ty, M., Alique, M., Fernandez-Arias,
C., Movila, A., Gomes, P., Weinstock, A., Xu, W., Edagha, I., Wassmer,
S.C., Walther, T., Ruiz-Ortega, M., Rodriguez, A., 2016. Angiotensin
receptors and β-catenin regulate brain endothelial integrity in malaria.
J. Clin. Invest. 126, 4016-4029. https://doi.org/10.1172/JCI87306
Gao, L., Tian, S., Gao, H., Xu, Y., 2013. Hypoxia increases Aβ-induced
tau phosphorylation by calpain and promotes behavioral consequences in
AD transgenic mice. J. Mol. Neurosci. 51, 138–147.
https://doi.org/10.1007/S12031-013-9966-Y
Gul, S., Ribeiro-Gomes, F.L., Moreira, A.S., Sanches, G.S., Conceição,
F.G., Daniel-Ribeiro, C.T., Ackerman, H.C., Carvalho, L.J.M., 2021.
Whole blood transfusion improves vascular integrity and increases
survival in artemether-treated experimental cerebral malaria. Sci. Rep.
11, 12077. https://doi.org/10.1038/S41598-021-91499-3
Hatch, R.J., Wei, Y., Xia, D., Götz, J., 2017. Hyperphosphorylated tau
causes reduced hippocampal CA1 excitability by relocating the axon
initial segment. Acta Neuropathol. 133, 717–730.
https://doi.org/10.1007/S00401-017-1674-1
Hempel, C., Hoyer, N., Kildemoes, A., Jendresen, C.B., Kurtzhals,
J.A.L., 2014. Systemic and Cerebral Vascular Endothelial Growth Factor
Levels Increase in Murine Cerebral Malaria along with Increased Calpain
and Caspase Activity and Can be Reduced by Erythropoietin Treatment.
Front. Immunol. 5. https://doi.org/10.3389/FIMMU.2014.00291
Hyman, B.T., Van Hoesen, G.W., Damasio, A.R., 1990. Memory-related
neural systems in Alzheimer’s disease: an anatomic study. Neurology 40,
1721–1730. https://doi.org/10.1212/WNL.40.11.1721
Iqbal, K., Del C. Alonso, A., Chen, S., Chohan, M.O., El-Akkad, E.,
Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H.,
Grundke-Iqbal, I., 2005. Tau pathology in Alzheimer disease and other
tauopathies. Biochim. Biophys. Acta 1739, 198–210.
https://doi.org/10.1016/J.BBADIS.2004.09.008
John, C.C., Kutamba, E., Mugarura, K., Opoka, R.O., 2010. Adjunctive
therapy for cerebral malaria and other severe forms of Plasmodium
falciparum malaria. Expert Rev. Anti. Infect. Ther. 8, 997–1008.
https://doi.org/10.1586/ERI.10.90
Jonas, P., Lisman, J., 2014. Structure, function, and plasticity of
hippocampal dentate gyrus microcircuits. Front. Neural Circuits 8.
https://doi.org/10.3389/FNCIR.2014.00107
Juan, C.A., de la Lastra, J.M.P., Plou, F.J., Pérez-Lebeña, E., 2021.
The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining
Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and
Induced Pathologies. Int. J. Mol. Sci. 22, 4642.
https://doi.org/10.3390/IJMS22094642
Kamiki, E., Boehringer, R., Polygalov, D., Ohshima, T., McHugh, T.J.,
2018. Inducible knockout of the cyclin-dependent kinase 5 activator p35
alters hippocampal spatial coding and neuronal excitability. Front.
Cell. Neurosci. 12, 324488.
https://doi.org/10.3389/FNCEL.2018.00138/BIBTEX
Kanungo, J., Zheng, Y.L., Amin, N.D., Pant, H.C., 2009. Targeting Cdk5
Activity in Neuronal Degeneration and Regeneration. Cell. Mol.
Neurobiol. 29, 1073-1080. https://doi.org/10.1007/S10571-009-9410-6
Kaul, T., Credle, J., Haggerty, T., Oaks, A.W., Masliah, E., Sidhu, A.,
2011. Region-specific tauopathy and synucleinopathy in brain of the
alpha-synuclein overexpressing mouse model of Parkinson’s disease. BMC
Neurosci. 12, 1–11. https://doi.org/10.1186/1471-2202-12-79/FIGURES/5
Kesner, R.P., 2007. Behavioral functions of the CA3 subregion of the
hippocampus. Learn. Mem. 14, 771–781. https://doi.org/10.1101/LM.688207
Kim, B., Backus, C., Oh, S.S., Hayes, J.M., Feldman, E.L., 2009.
Increased tau phosphorylation and cleavage in mouse models of type 1 and
type 2 diabetes. Endocrinology 150, 5294–5301.
https://doi.org/10.1210/EN.2009-0695
Kimura, T., Whitcomb, D.J., Jo, J., Regan, P., Piers, T., Heo, S.,
Brown, C., Hashikawa, T., Murayama, M., Seok, H., Sotiropoulos, I., Kim,
E., Collingridge, G.L., Takashima, A., Cho, K., 2014.
Microtubule-associated protein tau is essential for long-term depression
in the hippocampus. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130144.
https://doi.org/10.1098/RSTB.2013.0144
Koppel, J., Jimenez, H., Adrien, L., H. Chang, E., Malhotra, A.K.,
Davies, P., 2019. Increased tau phosphorylation follows impeded dopamine
clearance in a P301L and novel P301L/COMT-deleted (DM) tau mouse model.
J. Neurochem. 148, 127–135. https://doi.org/10.1111/JNC.14593
Kumar, S.P., Babu, P.P., 2022. NADPH Oxidase: a Possible Therapeutic
Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol.
Neurobiol. 59, 800–820. https://doi.org/10.1007/S12035-021-02598-1
Kumar, S.P., Babu, P.P., 2020. Aberrant Dopamine Receptor Signaling
Plays Critical Role in the Impairment of Striatal Neurons in
Experimental Cerebral Malaria. Mol. Neurobiol. 57, 5069–5083.
https://doi.org/10.1007/S12035-020-02076-0
LaPointe, N.E., Morfini, G., Pigino, G., Gaisina, I.N., Kozikowski,
A.P., Binder, L.I., Brady, S.T., 2009. The amino terminus of tau
inhibits kinesin-dependent axonal transport: implications for filament
toxicity. J. Neurosci. Res. 87, 440–451.
https://doi.org/10.1002/JNR.21850
Liu, W., Zhou, Y., Liang, R., Zhang, Y., 2019. Inhibition of
cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive
deficits. FASEB J. 33, 14506–14515.
https://doi.org/10.1096/FJ.201901292R
Loera-Valencia, R., Cedazo-Minguez, A., Kenigsberg, P.A., Page, G.,
Duarte, A.I., Giusti, P., Zusso, M., Robert, P., Frisoni, G.B.,
Cattaneo, A., Zille, M., Boltze, J., Cartier, N., Buee, L., Johansson,
G., Winblad, B., 2019. Current and emerging avenues for Alzheimer’s
disease drug targets. J. Intern. Med. 286, 398–437.
https://doi.org/10.1111/JOIM.12959
Malek, R., Arribas, R.L., Palomino-Antolin, A., Totoson, P., Demougeot,
C., Kobrlova, T., Soukup, O., Iriepa, I., Moraleda, I., Diez-Iriepa, D.,
Godyń, J., Panek, D., Malawska, B., Głuch-Lutwin, M., Mordyl, B., Siwek,
A., Chabchoub, F., Marco-Contelles, J., Kiec-Kononowicz, K., Egea, J.,
De Los Ríos, C., Ismaili, L., 2019. New Dual Small Molecules for
Alzheimer’s Disease Therapy Combining Histamine H3 Receptor (H3R)
Antagonism and Calcium Channels Blockade with Additional Cholinesterase
Inhibition. J. Med. Chem. 62, 11416–11422.
https://doi.org/10.1021/ACS.JMEDCHEM.9B00937
Mandelkow, E.M., Schweers, O., Drewes, G., Biernat, J., Gustke, N.,
Trinczek, B., Mandelkow, E., 1996. Structure, microtubule interactions,
and phosphorylation of tau protein. Ann. N. Y. Acad. Sci. 777, 96–106.
https://doi.org/10.1111/J.1749-6632.1996.TB34407.X
Mavroudis, I.A., Manani, M.G., Petrides, F., Petsoglou, C., Njau, S.N.,
Costa, V.G., Baloyannis, S.J., 2014. Dendritic and spinal alterations of
neurons from Edinger-Westphal nucleus in Alzheimer’s disease. Folia
Neuropathol. 52, 197–204. https://doi.org/10.5114/FN.2014.43791
McIsaac, T.L., Fritz, N.E., Quinn, L., Muratori, L.M., 2018.
Cognitive-Motor Interference in Neurodegenerative Disease: A Narrative
Review and Implications for Clinical Management. Front. Psychol. 9,
2061. https://doi.org/10.3389/FPSYG.2018.02061
Medana, I.M., Idro, R., Newton, C.R.J.C., 2007. Axonal and astrocyte
injury markers in the cerebrospinal fluid of Kenyan children with severe
malaria. J. Neurol. Sci. 258, 93–98.
https://doi.org/10.1016/J.JNS.2007.03.005
Medina-Vera, D., Navarro, J.A., Rivera, P., Rosell-Valle, C.,
Gutiérrez-Adán, A., Sanjuan, C., López-Gambero, A.J., Tovar, R., Suárez,
J., Pavón, F.J., Baixeras, E., Decara, J., Rodríguez de Fonseca, F.,
2022. d-Pinitol promotes tau dephosphorylation through a
cyclin-dependent kinase 5 regulation mechanism: A new potential approach
for tauopathies? Br. J. Pharmacol. 179, 4655-4672.
https://doi.org/10.1111/BPH.15907
Mondragón-Rodríguez, S., Perry, G., Luna-Muñoz, J., Acevedo-Aquino,
M.C., Williams, S., 2014. Phosphorylation of tau protein at sites
Ser(396-404) is one of the earliest events in Alzheimer’s disease and
Down syndrome. Neuropathol. Appl. Neurobiol. 40, 121–135.
https://doi.org/10.1111/NAN.12084
Morrone, C.D., Bazzigaluppi, P., Beckett, T.L., Hill, M.E., Koletar,
M.M., Stefanovic, B., McLaurin, J., 2020. Regional differences in
Alzheimer’s disease pathology confound behavioural rescue after
amyloid-β attenuation. Brain 143, 359–373.
https://doi.org/10.1093/BRAIN/AWZ371
Muppidi, P., Wright, E., Wassmer, S.C., Gupta, H., 2023. Diagnosis of
cerebral malaria: Tools to reduce Plasmodium falciparum associated
mortality. Front. Cell. Infect. Microbiol. 13, 1090013.
https://doi.org/10.3389/FCIMB.2023.1090013
Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J.,
Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M.,
Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau,
L.F., Duff, K., 2003. Cdk5 is a key factor in tau aggregation and tangle
formation in vivo. Neuron 38, 555–565.
https://doi.org/10.1016/S0896-6273(03)00259-9
Okuda, M., Fujita, Y., Hijikuro, I., Wada, M., Uemura, T., Kobayashi,
Y., Waku, T., Tanaka, N., Nishimoto, T., Izumi, Y., Kume, T., Akaike,
A., Takahashi, T., Sugimoto, H., 2017. PE859, A Novel Curcumin
Derivative, Inhibits Amyloid-β and Tau Aggregation, and Ameliorates
Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8. J.
Alzheimer’s Dis. 59, 313–328. https://doi.org/10.3233/JAD-161017
Patrick, G.N., Zukerberg, L., Nikolic, M., De La Monte, S., Dikkes, P.,
Tsai, L.H., 1999. Conversion of p35 to p25 deregulates Cdk5 activity and
promotes neurodegeneration. Nature 402, 615–622.
https://doi.org/10.1038/45159
Pena, A.C., Penacho, N., Mancio-Silva, L., Neres, R., Seixas, J.D.,
Fernandes, A.C., Romão, C.C., Mota, M.M., Bernardes, G.J.L., Pamplona,
A., 2012. A novel carbon monoxide-releasing molecule fully protects mice
from severe malaria. Antimicrob. Agents Chemother. 56, 1281–1290.
https://doi.org/10.1128/AAC.05571-11
Peyressatre, M., Laure, A., Pellerano, M., Boukhaddaoui, H., Soussi, I.,
Morris, M.C., 2020. Fluorescent Biosensor of CDK5 Kinase Activity in
Glioblastoma Cell Extracts and Living Cells. Biotechnol. J. 15, 1900474.
https://doi.org/10.1002/BIOT.201900474
Planche, V., Koubiyr, I., Romero, J.E., Manjon, J. V., Coupé, P.,
Deloire, M., Dousset, V., Brochet, B., Ruet, A., Tourdias, T., 2018.
Regional hippocampal vulnerability in early multiple sclerosis: Dynamic
pathological spreading from dentate gyrus to CA1. Hum. Brain Mapp. 39,
1814-1824. https://doi.org/10.1002/HBM.23970
Rashid, S., Bhat, B.A., Mehta, G., 2020. Conceptualization and Synthesis
of the First Inosito-Inositol (Decahydroxydecalin, DHD): In silico
Binding to β-Amyloid Protein. Chem. Eur. J. 26, 17005–17010.
https://doi.org/10.1002/CHEM.202003367
Raz, L., Bhaskar, K., Weaver, J., Marini, S., Zhang, Q., Thompson, J.F.,
Espinoza, C., Iqbal, S., Maphis, N.M., Weston, L., Sillerud, L.O.,
Caprihan, A., Pesko, J.C., Erhardt, E.B., Rosenberg, G.A., 2019. Hypoxia
promotes tau hyperphosphorylation with associated neuropathology in
vascular dysfunction. Neurobiol. Dis. 126, 124–136.
https://doi.org/10.1016/J.NBD.2018.07.009
Regalado-Reyes, M., Benavides-Piccione, R., Fernaud-Espinosa, I.,
DeFelipe, J., León-Espinosa, G., 2020. Effect of Phosphorylated Tau on
Cortical Pyramidal Neuron Morphology during Hibernation. Cereb. Cortex
Commun. 1, 1-25. https://doi.org/10.1093/TEXCOM/TGAA018
Regalado-Reyes, M., Furcila, D., Hernández, F., Ávila, J., Defelipe, J.,
León-Espinosa, G., 2019. Phospho-Tau Changes in the Human CA1 During
Alzheimer’s Disease Progression. J. Alzheimers. Dis. 69, 277–288.
https://doi.org/10.3233/JAD-181263
Regan, P., Piers, T., Yi, J.H., Kim, D.H., Huh, S., Park, S.J., Ryu,
J.H., Whitcomb, D.J., Cho, K., 2015. Tau phosphorylation at serine 396
residue is required for hippocampal LTD. J. Neurosci. 35, 4804–4812.
https://doi.org/10.1523/JNEUROSCI.2842-14.2015
Reis, P.A., Comim, C.M., Hermani, F., Silva, B., Barichello, T.,
Portella, A.C., Gomes, F.C.A., Sab, I.M., Frutuoso, V.S., Oliveira,
M.F., Bozza, P.T., Bozza, F.A., Dal-Pizzol, F., Zimmerman, G.A.,
Quevedo, J., Castro-Faria-Neto, H.C., 2010. Cognitive dysfunction is
sustained after rescue therapy in experimental cerebral malaria, and is
reduced by additive antioxidant therapy. PLoS Pathog. 6, e1000963.
https://doi.org/10.1371/JOURNAL.PPAT.1000963
Rénia, L., Howland, S.W., Claser, C., Gruner, A.C., Suwanarusk, R., Teo,
T.H., Russell, B., Lisa, N.P., 2012. Cerebral malaria: mysteries at the
blood-brain barrier. Virulence 3, 193–201.
https://doi.org/10.4161/VIRU.19013
Sanders, O., 2020. Sildenafil for the Treatment of Alzheimer’s Disease:
A Systematic Review. J. Alzheimer’s Dis. reports 4, 91–106.
https://doi.org/10.3233/ADR-200166
Schaler, A.W., Myeku, N., 2018. Cilostazol, a phosphodiesterase 3
inhibitor, activates proteasome-mediated proteolysis and attenuates
tauopathy and cognitive decline. Transl. Res. 193, 31–41.
https://doi.org/10.1016/J.TRSL.2017.11.004
Scheff, S.W., Price, D.A., Schmitt, F.A., Mufson, E.J., 2006.
Hippocampal synaptic loss in early Alzheimer’s disease and mild
cognitive impairment. Neurobiol. Aging 27, 1372–1384.
https://doi.org/10.1016/J.NEUROBIOLAGING.2005.09.012
Seidler, P.M., Murray, K.A., Boyer, D.R., Ge, P., Sawaya, M.R., Hu,
C.J., Cheng, X., Abskharon, R., Pan, H., DeTure, M.A., Williams, C.K.,
Dickson, D.W., Vinters, H. V., Eisenberg, D.S., 2022. Structure-based
discovery of small molecules that disaggregate Alzheimer’s disease
tissue derived tau fibrils in vitro. Nat. Commun. 131, 1–12.
https://doi.org/10.1038/s41467-022-32951-4
Serghides, L., McDonald, C.R., Lu, Z., Friedel, M., Cui, C., Ho, K.T.,
Mount, H.T.J., Sled, J.G., Kain, K.C., 2014. PPARγ Agonists Improve
Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria
and Induce Neuroprotective Pathways in Human Malaria. PLOS Pathog. 10,
e1003980. https://doi.org/10.1371/JOURNAL.PPAT.1003980
Sparrow, J.R., Vollmer-Snarr, H.R., Zhou, J., Jang, Y.P., Jockusch, S.,
Itagaki, Y., Nakanishi, K., 2003. A2E-epoxides damage DNA in retinal
pigment epithelial cells. Vitamin E and other antioxidants inhibit
A2E-epoxide formation. J. Biol. Chem. 278, 18207–18213.
https://doi.org/10.1074/JBC.M300457200
Szałaj, N., Godyń, J., Jończyk, J., Pasieka, A., Panek, D., Wichur, T.,
Więckowski, K., Zaręba, P., Bajda, M., Pislar, A., Malawska, B., Sabate,
R., Więckowska, A., 2020. Multidirectional in vitro and in cellulo
studies as a tool for identification of multi-target-directed ligands
aiming at symptoms and causes of Alzheimer’s disease. J. Enzyme Inhib.
Med. Chem. 35, 1944–1952. https://doi.org/10.1080/14756366.2020.1835882
Takahashi, M., Takasugi, T., Kawakami, A., Wei, R., Ando, K., Ohshima,
T., Hisanaga, S. ichi, 2022. Valproic Acid-Induced Anxiety and
Depression Behaviors are Ameliorated in p39 Cdk5 Activator-Deficient
Mice. Neurochem. Res. 47, 2773–2779.
https://doi.org/10.1007/S11064-022-03642-9
Taylor, H.B.C., Emptage, N.J., Jeans, A.F., 2021. Long-term depression
links amyloid-β to the pathological hyperphosphorylation of tau. Cell
Rep. 36, 109638. https://doi.org/10.1016/J.CELREP.2021.109638
Terraneo, L., Samaja, M., 2017. Comparative Response of Brain to Chronic
Hypoxia and Hyperoxia. Int. J. Mol. Sci. 18, 1914.
https://doi.org/10.3390/IJMS18091914
Tsai, L.H., Takahashi, T., Caviness, V.S., Harlow, E., 1993. Activity
and expression pattern of cyclin-dependent kinase 5 in the embryonic
mouse nervous system. Development 119, 1029–1040.
https://doi.org/10.1242/DEV.119.4.1029
Van Strien, N.M., Cappaert, N.L.M., Witter, M.P., 2009. The anatomy of
memory: an interactive overview of the parahippocampal-hippocampal
network. Nat. Rev. Neurosci. 10, 272–282.
https://doi.org/10.1038/NRN2614
Wachtel, H., 1983. Potential antidepressant activity of rolipram and
other selective cyclic adenosine 3’,5’-monophosphate phosphodiesterase
inhibitors. Neuropharmacology 22, 267–272.
https://doi.org/10.1016/0028-3908(83)90239-3
West, M.J., Kawas, C.H., Stewart, W.F., Rudow, G.L., Troncoso, J.C.,
2004. Hippocampal neurons in pre-clinical Alzheimer’s disease.
Neurobiol. Aging 25, 1205–1212.
https://doi.org/10.1016/j.neurobiolaging.2003.12.005
Zaqout, S., Kaindl, A.M., 2016. Golgi-cox staining step by step. Front.
Neuroanat. 10, 181342. https://doi.org/10.3389/FNANA.2016.00038/BIBTEX
Zhang, J., Zhang, Y., Xu, M., Miao, Z., Tian, Y., 2021. Inhibition of
the CDK5/caspase-3 Pathway by p5-TAT Protects Hippocampal Neurogenesis
and Alleviates Radiation-induced Cognitive Dysfunction. Neuroscience
463, 204–215. https://doi.org/10.1016/J.NEUROSCIENCE.2021.03.034
Zheng, Y.L., Amin, N.D., Hu, Y.F., Rudrabhatla, P., Shukla, V., Kanungo,
J., Kesavapany, S., Grant, P., Albers, W., Pant, H.C., 2010. A
24-Residue Peptide (p5), Derived from p35, the Cdk5 Neuronal Activator,
Specifically Inhibits Cdk5-p25 Hyperactivity and Tau
Hyperphosphorylation. J. Biol. Chem. 285, 34202–34212.
https://doi.org/10.1074/JBC.M110.134643
Fig.1. Figure representing small molecule inhibitors of tau and Aβ
aggregation.
Fig.2. Figure representing bicyclic conduritol and annulated inositols
Fig.3. General synthetic strategy for the synthesis of target
Polycyclitols
Fig.4. A) Graph representing the RMCBS scores of PbA infected animals
from day 5 to 9 and restoration of neurobehavioural parameters after
rescue therapy with SR4 (01-04). B) Kaplan-Meier survival curve
representing 50-60 percent survival rate after SR4 (01-04) adjunctive
therapy until day 30. C) Work plan showing the time points of PbA
infection and cognitive tests performed after survival day 30.
Fig.5. A) Barnes Maze with an escape platform. B) primary latencies
exhibited by experimental groups C) Barnes maze trackplots D) number of
errors performed till day 5 E) heat maps recorded using ANYmaze tracking
software F) representing the trackplots of experimental animals
exhibited in novel object recognition test. G) The retrieval phase
represents that SR4-02 group exhibit significant increase in exploration
time compared to rest of the experimental groups. H) representing
correct and wrong alternation in T-maze experiment I) representing the
percentage of correct alteration of all the experimental groups
exhibited in T-maze along with. Novel object (***p<0.001,
**p=0.022, *p=0.044), known object (***p<0.001, **p=0.002,
*p=0.001)
Fig.6. A) Representing immunohistochemical staining of phospho tau at
Ser396 levels in cortical (B) and hippocampal brain regions (C) of all
the experimental groups. ***p<0.001. Scale bar- 15 μm.
Fig.7. A) Photomicrograph representing the neuronal arborization pattern
of cortical and hippocampal regions of Golgi-cox impregnated brain
sections of all the experimental groups. B) Graph representing the
length of distal and proximal dendrites of hippocampal neurons. C) Graph
representing the length of distal and proximal dendrites of cortical
neurons ***p<0.001. Scale bar- 20 μm.
Fig.8. Figure representing A) Western blots of phospho tau Ser396, cdk5,
phospho-cdk5 Ser159, p35, p25 and GAPDH protein levels in all the
experimental groups. B) graphs representing the densitometry of
corresponding Western blots. *** p<0.001, **p=0.016, *p=0.038.