References
Akide Ndunge, O.B., Shikani, H.J., Dai, M., Freeman, B.D., Desruisseaux, M.S., 2023. Effects of anti-tau immunotherapy on reactive microgliosis, cerebral endotheliopathy, and cognitive function in an experimental model of cerebral malaria. J. Neurochem. 167, 441–460. https://doi.org/10.1111/JNC.15972
Andersen, P., Morris, R., Amaral, D., Bliss, T., O’ Keefe, J., 2006. The Hippocampus Book. Hippocampus B. 1–852. https://doi.org/10.1093/ACPROF:OSO/9780195100273.001.0001
Ao, C., Li, C., Chen, J., Tan, J., Zeng, L., 2022. The role of Cdk5 in neurological disorders. Front. Cell. Neurosci. 16, 951202. https://doi.org/10.3389/FNCEL.2022.951202/BIBTEX
Ballatore, C., Lee, V.M.Y., Trojanowski, J.Q., 2007. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672. https://doi.org/10.1038/nrn2194
Basu, J., Siegelbaum, S.A., 2015. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb. Perspect. Biol. 7, a021733. https://doi.org/10.1101/CSHPERSPECT.A021733
Bk, B., Skuntz, S., Prochazkova, M., Kesavapany, S., Amin, N.D., Shukla, V., Grant, P., Kulkarni, A.B., Pant, H.C., 2019. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Hum. Mol. Genet. 28, 3175-3187. https://doi.org/10.1093/HMG/DDZ118
Brejt, J.A., Golightly, L.M., 2019. Severe malaria: update on pathophysiology and treatment. Curr. Opin. Infect. Dis. 32, 413–418. https://doi.org/10.1097/QCO.0000000000000584
Bruneel, F., 2019. Human cerebral malaria: 2019 mini review. Rev. Neurol. (Paris). 175, 445–450. https://doi.org/10.1016/J.NEUROL.2019.07.008
Bulic, B., Pickhardt, M., Mandelkow, E.M., Mandelkow, E., 2010. Tau protein and tau aggregation inhibitors. Neuropharmacology 59, 276–289. https://doi.org/10.1016/J.NEUROPHARM.2010.01.016
Carroll, R.W., Wainwright, M.S., Kim, K.Y., Kidambi, T., Gómez, N.D., Taylor, T., Haldar, K., 2010. A Rapid Murine Coma and Behavior Scale for Quantitative Assessment of Murine Cerebral Malaria. PLoS One 5, e13124. https://doi.org/10.1371/JOURNAL.PONE.0013124
Clemmer, L., Martins, Y.C., Zanini, G.M., Frangos, J.A., Carvalho, L.J.M., 2011. Artemether and artesunate show the highest efficacies in rescuing mice with late-stage cerebral malaria and rapidly decrease leukocyte accumulation in the brain. Antimicrob. Agents Chemother. 55, 1383–1390. https://doi.org/10.1128/AAC.01277-10
Cuadrado-Tejedor, M., Garcia-Barroso, C., Sánchez-Arias, J.A., Rabal, O., Pérez-González, M., Mederos, S., Ugarte, A., Franco, R., Segura, V., Perea, G., Oyarzabal, J., Garcia-Osta, A., 2017. A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer’s Disease Mice. Neuropsychopharmacology 42, 524-539. https://doi.org/10.1038/NPP.2016.163
Cummings, J., Lee, G., Ritter, A., Sabbagh, M., Zhong, K., 2020. Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s Dement. (New York, N. Y.) 6, e12050. https://doi.org/10.1002/TRC2.12050
Czapski, G.A., Gassowska, M., Wilkaniec, A., Chalimoniuk, M., Strosznajder, J.B., Adamczyk, A., 2016. The mechanisms regulating cyclin-dependent kinase 5 in hippocampus during systemic inflammatory response: The effect on inflammatory gene expression. Neurochem. Int. 93, 103–112. https://doi.org/10.1016/J.NEUINT.2016.01.005
Dai, M., Freeman, B., Bruno, F.P., Shikani, H.J., Tanowitz, H.B., Weiss, L.M., Reznik, S.E., Stephani, R.A., Desruisseaux, M.S., 2012a. The novel ETA receptor antagonist HJP-272 prevents cerebral microvascular hemorrhage in cerebral malaria and synergistically improves survival in combination with an artemisinin derivative. Life Sci. 91, 687–692. https://doi.org/10.1016/J.LFS.2012.07.006
Dai, M., Freeman, B., Shikani, H.J., Bruno, F.P., Collado, J.E., Macias, R., Reznik, S.E., Davies, P., Spray, D.C., Tanowitz, H.B., Weiss, L.M., Desruisseaux, M.S., 2012b. Altered Regulation of Akt Signaling with Murine Cerebral Malaria, Effects on Long-Term Neuro-Cognitive Function, Restoration with Lithium Treatment. PLoS One 7, e44117. https://doi.org/10.1371/JOURNAL.PONE.0044117
Dai, M., Reznik, S.E., Spray, D.C., Weiss, L.M., Tanowitz, H.B., Gulinello, M., Desruisseaux, M.S., 2010. Persistent cognitive and motor deficits after successful antimalarial treatment in murine cerebral malaria. Microbes Infect. 12, 1198–1207. https://doi.org/10.1016/J.MICINF.2010.08.006
Datta, D., Bangirana, P., Opoka, R.O., Conroy, A.L., Co, K., Bond, C., Zhao, Y., Kawata, K., Saykin, A.J., John, C.C., 2021. Association of Plasma Tau With Mortality and Long-term Neurocognitive Impairment in Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA Netw. open 4, e2138515. https://doi.org/10.1001/JAMANETWORKOPEN.2021.38515
Davolio, C., Greenamyre, J.T., 1995. Selective vulnerability of the CA1 region of hippocampus to the indirect excitotoxic effects of malonic acid. Neurosci. Lett. 192, 29–32. https://doi.org/10.1016/0304-3940(95)11600-2
Dhavan, R., Tsai, L.H., 2001. A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759. https://doi.org/10.1038/35096019
Ding, Y., Zhang, L., Zhou, W., Lu, H., Gao, X., Li, J., Liu, J., Niu, X., Zheng, J., 2022. Role of cyclin-dependent kinase 5 in early brain injury following experimental subarachnoid hemorrhage. Exp. Ther. Med. 23, 147. https://doi.org/10.3892/ETM.2021.11070
Freude, S., Plum, L., Schnitker, J., Leeser, U., Udelhoven, M., Krone, W., Bruning, J.C., Schubert, M., 2005. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 54, 3343–3348. https://doi.org/10.2337/DIABETES.54.12.3343
Gallego-Delgado, J., Basu-Roy, U., Ty, M., Alique, M., Fernandez-Arias, C., Movila, A., Gomes, P., Weinstock, A., Xu, W., Edagha, I., Wassmer, S.C., Walther, T., Ruiz-Ortega, M., Rodriguez, A., 2016. Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria. J. Clin. Invest. 126, 4016-4029. https://doi.org/10.1172/JCI87306
Gao, L., Tian, S., Gao, H., Xu, Y., 2013. Hypoxia increases Aβ-induced tau phosphorylation by calpain and promotes behavioral consequences in AD transgenic mice. J. Mol. Neurosci. 51, 138–147. https://doi.org/10.1007/S12031-013-9966-Y
Gul, S., Ribeiro-Gomes, F.L., Moreira, A.S., Sanches, G.S., Conceição, F.G., Daniel-Ribeiro, C.T., Ackerman, H.C., Carvalho, L.J.M., 2021. Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Sci. Rep. 11, 12077. https://doi.org/10.1038/S41598-021-91499-3
Hatch, R.J., Wei, Y., Xia, D., Götz, J., 2017. Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment. Acta Neuropathol. 133, 717–730. https://doi.org/10.1007/S00401-017-1674-1
Hempel, C., Hoyer, N., Kildemoes, A., Jendresen, C.B., Kurtzhals, J.A.L., 2014. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front. Immunol. 5. https://doi.org/10.3389/FIMMU.2014.00291
Hyman, B.T., Van Hoesen, G.W., Damasio, A.R., 1990. Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40, 1721–1730. https://doi.org/10.1212/WNL.40.11.1721
Iqbal, K., Del C. Alonso, A., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., Grundke-Iqbal, I., 2005. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta 1739, 198–210. https://doi.org/10.1016/J.BBADIS.2004.09.008
John, C.C., Kutamba, E., Mugarura, K., Opoka, R.O., 2010. Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev. Anti. Infect. Ther. 8, 997–1008. https://doi.org/10.1586/ERI.10.90
Jonas, P., Lisman, J., 2014. Structure, function, and plasticity of hippocampal dentate gyrus microcircuits. Front. Neural Circuits 8. https://doi.org/10.3389/FNCIR.2014.00107
Juan, C.A., de la Lastra, J.M.P., Plou, F.J., Pérez-Lebeña, E., 2021. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 22, 4642. https://doi.org/10.3390/IJMS22094642
Kamiki, E., Boehringer, R., Polygalov, D., Ohshima, T., McHugh, T.J., 2018. Inducible knockout of the cyclin-dependent kinase 5 activator p35 alters hippocampal spatial coding and neuronal excitability. Front. Cell. Neurosci. 12, 324488. https://doi.org/10.3389/FNCEL.2018.00138/BIBTEX
Kanungo, J., Zheng, Y.L., Amin, N.D., Pant, H.C., 2009. Targeting Cdk5 Activity in Neuronal Degeneration and Regeneration. Cell. Mol. Neurobiol. 29, 1073-1080. https://doi.org/10.1007/S10571-009-9410-6
Kaul, T., Credle, J., Haggerty, T., Oaks, A.W., Masliah, E., Sidhu, A., 2011. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson’s disease. BMC Neurosci. 12, 1–11. https://doi.org/10.1186/1471-2202-12-79/FIGURES/5
Kesner, R.P., 2007. Behavioral functions of the CA3 subregion of the hippocampus. Learn. Mem. 14, 771–781. https://doi.org/10.1101/LM.688207
Kim, B., Backus, C., Oh, S.S., Hayes, J.M., Feldman, E.L., 2009. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294–5301. https://doi.org/10.1210/EN.2009-0695
Kimura, T., Whitcomb, D.J., Jo, J., Regan, P., Piers, T., Heo, S., Brown, C., Hashikawa, T., Murayama, M., Seok, H., Sotiropoulos, I., Kim, E., Collingridge, G.L., Takashima, A., Cho, K., 2014. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130144. https://doi.org/10.1098/RSTB.2013.0144
Koppel, J., Jimenez, H., Adrien, L., H. Chang, E., Malhotra, A.K., Davies, P., 2019. Increased tau phosphorylation follows impeded dopamine clearance in a P301L and novel P301L/COMT-deleted (DM) tau mouse model. J. Neurochem. 148, 127–135. https://doi.org/10.1111/JNC.14593
Kumar, S.P., Babu, P.P., 2022. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol. Neurobiol. 59, 800–820. https://doi.org/10.1007/S12035-021-02598-1
Kumar, S.P., Babu, P.P., 2020. Aberrant Dopamine Receptor Signaling Plays Critical Role in the Impairment of Striatal Neurons in Experimental Cerebral Malaria. Mol. Neurobiol. 57, 5069–5083. https://doi.org/10.1007/S12035-020-02076-0
LaPointe, N.E., Morfini, G., Pigino, G., Gaisina, I.N., Kozikowski, A.P., Binder, L.I., Brady, S.T., 2009. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J. Neurosci. Res. 87, 440–451. https://doi.org/10.1002/JNR.21850
Liu, W., Zhou, Y., Liang, R., Zhang, Y., 2019. Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits. FASEB J. 33, 14506–14515. https://doi.org/10.1096/FJ.201901292R
Loera-Valencia, R., Cedazo-Minguez, A., Kenigsberg, P.A., Page, G., Duarte, A.I., Giusti, P., Zusso, M., Robert, P., Frisoni, G.B., Cattaneo, A., Zille, M., Boltze, J., Cartier, N., Buee, L., Johansson, G., Winblad, B., 2019. Current and emerging avenues for Alzheimer’s disease drug targets. J. Intern. Med. 286, 398–437. https://doi.org/10.1111/JOIM.12959
Malek, R., Arribas, R.L., Palomino-Antolin, A., Totoson, P., Demougeot, C., Kobrlova, T., Soukup, O., Iriepa, I., Moraleda, I., Diez-Iriepa, D., Godyń, J., Panek, D., Malawska, B., Głuch-Lutwin, M., Mordyl, B., Siwek, A., Chabchoub, F., Marco-Contelles, J., Kiec-Kononowicz, K., Egea, J., De Los Ríos, C., Ismaili, L., 2019. New Dual Small Molecules for Alzheimer’s Disease Therapy Combining Histamine H3 Receptor (H3R) Antagonism and Calcium Channels Blockade with Additional Cholinesterase Inhibition. J. Med. Chem. 62, 11416–11422. https://doi.org/10.1021/ACS.JMEDCHEM.9B00937
Mandelkow, E.M., Schweers, O., Drewes, G., Biernat, J., Gustke, N., Trinczek, B., Mandelkow, E., 1996. Structure, microtubule interactions, and phosphorylation of tau protein. Ann. N. Y. Acad. Sci. 777, 96–106. https://doi.org/10.1111/J.1749-6632.1996.TB34407.X
Mavroudis, I.A., Manani, M.G., Petrides, F., Petsoglou, C., Njau, S.N., Costa, V.G., Baloyannis, S.J., 2014. Dendritic and spinal alterations of neurons from Edinger-Westphal nucleus in Alzheimer’s disease. Folia Neuropathol. 52, 197–204. https://doi.org/10.5114/FN.2014.43791
McIsaac, T.L., Fritz, N.E., Quinn, L., Muratori, L.M., 2018. Cognitive-Motor Interference in Neurodegenerative Disease: A Narrative Review and Implications for Clinical Management. Front. Psychol. 9, 2061. https://doi.org/10.3389/FPSYG.2018.02061
Medana, I.M., Idro, R., Newton, C.R.J.C., 2007. Axonal and astrocyte injury markers in the cerebrospinal fluid of Kenyan children with severe malaria. J. Neurol. Sci. 258, 93–98. https://doi.org/10.1016/J.JNS.2007.03.005
Medina-Vera, D., Navarro, J.A., Rivera, P., Rosell-Valle, C., Gutiérrez-Adán, A., Sanjuan, C., López-Gambero, A.J., Tovar, R., Suárez, J., Pavón, F.J., Baixeras, E., Decara, J., Rodríguez de Fonseca, F., 2022. d-Pinitol promotes tau dephosphorylation through a cyclin-dependent kinase 5 regulation mechanism: A new potential approach for tauopathies? Br. J. Pharmacol. 179, 4655-4672. https://doi.org/10.1111/BPH.15907
Mondragón-Rodríguez, S., Perry, G., Luna-Muñoz, J., Acevedo-Aquino, M.C., Williams, S., 2014. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol. Appl. Neurobiol. 40, 121–135. https://doi.org/10.1111/NAN.12084
Morrone, C.D., Bazzigaluppi, P., Beckett, T.L., Hill, M.E., Koletar, M.M., Stefanovic, B., McLaurin, J., 2020. Regional differences in Alzheimer’s disease pathology confound behavioural rescue after amyloid-β attenuation. Brain 143, 359–373. https://doi.org/10.1093/BRAIN/AWZ371
Muppidi, P., Wright, E., Wassmer, S.C., Gupta, H., 2023. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front. Cell. Infect. Microbiol. 13, 1090013. https://doi.org/10.3389/FCIMB.2023.1090013
Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M., Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau, L.F., Duff, K., 2003. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38, 555–565. https://doi.org/10.1016/S0896-6273(03)00259-9
Okuda, M., Fujita, Y., Hijikuro, I., Wada, M., Uemura, T., Kobayashi, Y., Waku, T., Tanaka, N., Nishimoto, T., Izumi, Y., Kume, T., Akaike, A., Takahashi, T., Sugimoto, H., 2017. PE859, A Novel Curcumin Derivative, Inhibits Amyloid-β and Tau Aggregation, and Ameliorates Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8. J. Alzheimer’s Dis. 59, 313–328. https://doi.org/10.3233/JAD-161017
Patrick, G.N., Zukerberg, L., Nikolic, M., De La Monte, S., Dikkes, P., Tsai, L.H., 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622. https://doi.org/10.1038/45159
Pena, A.C., Penacho, N., Mancio-Silva, L., Neres, R., Seixas, J.D., Fernandes, A.C., Romão, C.C., Mota, M.M., Bernardes, G.J.L., Pamplona, A., 2012. A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob. Agents Chemother. 56, 1281–1290. https://doi.org/10.1128/AAC.05571-11
Peyressatre, M., Laure, A., Pellerano, M., Boukhaddaoui, H., Soussi, I., Morris, M.C., 2020. Fluorescent Biosensor of CDK5 Kinase Activity in Glioblastoma Cell Extracts and Living Cells. Biotechnol. J. 15, 1900474. https://doi.org/10.1002/BIOT.201900474
Planche, V., Koubiyr, I., Romero, J.E., Manjon, J. V., Coupé, P., Deloire, M., Dousset, V., Brochet, B., Ruet, A., Tourdias, T., 2018. Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1. Hum. Brain Mapp. 39, 1814-1824. https://doi.org/10.1002/HBM.23970
Rashid, S., Bhat, B.A., Mehta, G., 2020. Conceptualization and Synthesis of the First Inosito-Inositol (Decahydroxydecalin, DHD): In silico Binding to β-Amyloid Protein. Chem. Eur. J. 26, 17005–17010. https://doi.org/10.1002/CHEM.202003367
Raz, L., Bhaskar, K., Weaver, J., Marini, S., Zhang, Q., Thompson, J.F., Espinoza, C., Iqbal, S., Maphis, N.M., Weston, L., Sillerud, L.O., Caprihan, A., Pesko, J.C., Erhardt, E.B., Rosenberg, G.A., 2019. Hypoxia promotes tau hyperphosphorylation with associated neuropathology in vascular dysfunction. Neurobiol. Dis. 126, 124–136. https://doi.org/10.1016/J.NBD.2018.07.009
Regalado-Reyes, M., Benavides-Piccione, R., Fernaud-Espinosa, I., DeFelipe, J., León-Espinosa, G., 2020. Effect of Phosphorylated Tau on Cortical Pyramidal Neuron Morphology during Hibernation. Cereb. Cortex Commun. 1, 1-25. https://doi.org/10.1093/TEXCOM/TGAA018
Regalado-Reyes, M., Furcila, D., Hernández, F., Ávila, J., Defelipe, J., León-Espinosa, G., 2019. Phospho-Tau Changes in the Human CA1 During Alzheimer’s Disease Progression. J. Alzheimers. Dis. 69, 277–288. https://doi.org/10.3233/JAD-181263
Regan, P., Piers, T., Yi, J.H., Kim, D.H., Huh, S., Park, S.J., Ryu, J.H., Whitcomb, D.J., Cho, K., 2015. Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J. Neurosci. 35, 4804–4812. https://doi.org/10.1523/JNEUROSCI.2842-14.2015
Reis, P.A., Comim, C.M., Hermani, F., Silva, B., Barichello, T., Portella, A.C., Gomes, F.C.A., Sab, I.M., Frutuoso, V.S., Oliveira, M.F., Bozza, P.T., Bozza, F.A., Dal-Pizzol, F., Zimmerman, G.A., Quevedo, J., Castro-Faria-Neto, H.C., 2010. Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog. 6, e1000963. https://doi.org/10.1371/JOURNAL.PPAT.1000963
Rénia, L., Howland, S.W., Claser, C., Gruner, A.C., Suwanarusk, R., Teo, T.H., Russell, B., Lisa, N.P., 2012. Cerebral malaria: mysteries at the blood-brain barrier. Virulence 3, 193–201. https://doi.org/10.4161/VIRU.19013
Sanders, O., 2020. Sildenafil for the Treatment of Alzheimer’s Disease: A Systematic Review. J. Alzheimer’s Dis. reports 4, 91–106. https://doi.org/10.3233/ADR-200166
Schaler, A.W., Myeku, N., 2018. Cilostazol, a phosphodiesterase 3 inhibitor, activates proteasome-mediated proteolysis and attenuates tauopathy and cognitive decline. Transl. Res. 193, 31–41. https://doi.org/10.1016/J.TRSL.2017.11.004
Scheff, S.W., Price, D.A., Schmitt, F.A., Mufson, E.J., 2006. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384. https://doi.org/10.1016/J.NEUROBIOLAGING.2005.09.012
Seidler, P.M., Murray, K.A., Boyer, D.R., Ge, P., Sawaya, M.R., Hu, C.J., Cheng, X., Abskharon, R., Pan, H., DeTure, M.A., Williams, C.K., Dickson, D.W., Vinters, H. V., Eisenberg, D.S., 2022. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat. Commun. 131, 1–12. https://doi.org/10.1038/s41467-022-32951-4
Serghides, L., McDonald, C.R., Lu, Z., Friedel, M., Cui, C., Ho, K.T., Mount, H.T.J., Sled, J.G., Kain, K.C., 2014. PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria. PLOS Pathog. 10, e1003980. https://doi.org/10.1371/JOURNAL.PPAT.1003980
Sparrow, J.R., Vollmer-Snarr, H.R., Zhou, J., Jang, Y.P., Jockusch, S., Itagaki, Y., Nakanishi, K., 2003. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278, 18207–18213. https://doi.org/10.1074/JBC.M300457200
Szałaj, N., Godyń, J., Jończyk, J., Pasieka, A., Panek, D., Wichur, T., Więckowski, K., Zaręba, P., Bajda, M., Pislar, A., Malawska, B., Sabate, R., Więckowska, A., 2020. Multidirectional in vitro and in cellulo studies as a tool for identification of multi-target-directed ligands aiming at symptoms and causes of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 35, 1944–1952. https://doi.org/10.1080/14756366.2020.1835882
Takahashi, M., Takasugi, T., Kawakami, A., Wei, R., Ando, K., Ohshima, T., Hisanaga, S. ichi, 2022. Valproic Acid-Induced Anxiety and Depression Behaviors are Ameliorated in p39 Cdk5 Activator-Deficient Mice. Neurochem. Res. 47, 2773–2779. https://doi.org/10.1007/S11064-022-03642-9
Taylor, H.B.C., Emptage, N.J., Jeans, A.F., 2021. Long-term depression links amyloid-β to the pathological hyperphosphorylation of tau. Cell Rep. 36, 109638. https://doi.org/10.1016/J.CELREP.2021.109638
Terraneo, L., Samaja, M., 2017. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int. J. Mol. Sci. 18, 1914. https://doi.org/10.3390/IJMS18091914
Tsai, L.H., Takahashi, T., Caviness, V.S., Harlow, E., 1993. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040. https://doi.org/10.1242/DEV.119.4.1029
Van Strien, N.M., Cappaert, N.L.M., Witter, M.P., 2009. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat. Rev. Neurosci. 10, 272–282. https://doi.org/10.1038/NRN2614
Wachtel, H., 1983. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3’,5’-monophosphate phosphodiesterase inhibitors. Neuropharmacology 22, 267–272. https://doi.org/10.1016/0028-3908(83)90239-3
West, M.J., Kawas, C.H., Stewart, W.F., Rudow, G.L., Troncoso, J.C., 2004. Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol. Aging 25, 1205–1212. https://doi.org/10.1016/j.neurobiolaging.2003.12.005
Zaqout, S., Kaindl, A.M., 2016. Golgi-cox staining step by step. Front. Neuroanat. 10, 181342. https://doi.org/10.3389/FNANA.2016.00038/BIBTEX
Zhang, J., Zhang, Y., Xu, M., Miao, Z., Tian, Y., 2021. Inhibition of the CDK5/caspase-3 Pathway by p5-TAT Protects Hippocampal Neurogenesis and Alleviates Radiation-induced Cognitive Dysfunction. Neuroscience 463, 204–215. https://doi.org/10.1016/J.NEUROSCIENCE.2021.03.034
Zheng, Y.L., Amin, N.D., Hu, Y.F., Rudrabhatla, P., Shukla, V., Kanungo, J., Kesavapany, S., Grant, P., Albers, W., Pant, H.C., 2010. A 24-Residue Peptide (p5), Derived from p35, the Cdk5 Neuronal Activator, Specifically Inhibits Cdk5-p25 Hyperactivity and Tau Hyperphosphorylation. J. Biol. Chem. 285, 34202–34212. https://doi.org/10.1074/JBC.M110.134643
Fig.1. Figure representing small molecule inhibitors of tau and Aβ aggregation.
Fig.2. Figure representing bicyclic conduritol and annulated inositols
Fig.3. General synthetic strategy for the synthesis of target Polycyclitols
Fig.4. A) Graph representing the RMCBS scores of PbA infected animals from day 5 to 9 and restoration of neurobehavioural parameters after rescue therapy with SR4 (01-04). B) Kaplan-Meier survival curve representing 50-60 percent survival rate after SR4 (01-04) adjunctive therapy until day 30. C) Work plan showing the time points of PbA infection and cognitive tests performed after survival day 30.
Fig.5. A) Barnes Maze with an escape platform. B) primary latencies exhibited by experimental groups C) Barnes maze trackplots D) number of errors performed till day 5 E) heat maps recorded using ANYmaze tracking software F) representing the trackplots of experimental animals exhibited in novel object recognition test. G) The retrieval phase represents that SR4-02 group exhibit significant increase in exploration time compared to rest of the experimental groups. H) representing correct and wrong alternation in T-maze experiment I) representing the percentage of correct alteration of all the experimental groups exhibited in T-maze along with. Novel object (***p<0.001, **p=0.022, *p=0.044), known object (***p<0.001, **p=0.002, *p=0.001)
Fig.6. A) Representing immunohistochemical staining of phospho tau at Ser396 levels in cortical (B) and hippocampal brain regions (C) of all the experimental groups. ***p<0.001. Scale bar- 15 μm.
Fig.7. A) Photomicrograph representing the neuronal arborization pattern of cortical and hippocampal regions of Golgi-cox impregnated brain sections of all the experimental groups. B) Graph representing the length of distal and proximal dendrites of hippocampal neurons. C) Graph representing the length of distal and proximal dendrites of cortical neurons ***p<0.001. Scale bar- 20 μm.
Fig.8. Figure representing A) Western blots of phospho tau Ser396, cdk5, phospho-cdk5 Ser159, p35, p25 and GAPDH protein levels in all the experimental groups. B) graphs representing the densitometry of corresponding Western blots. *** p<0.001, **p=0.016, *p=0.038.