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Table S1. Constants and parameter values used in this study

Symbol Value Units Description
A 3.5×10−25 Pa−3 s−1 Flow law parameter (for ice at -10°C)
C Spatially varying s1/2 m−1/2 Drag coefficient used in basal stress calculation
ct 7.5× 10−8 K Pa−1 Change of pressure melting point with temperature
cw 4.22× 103 J kg−1 K−1 Heat capacity of water
G 0.07 W m−2 Geothermal flux
g 9.81 m s−2 Gravitational acceleration
H Varying m Ice thickness
L 3.34× 105 J kg−1 Latent heat of fusion of water
n 3 Dimensionless Flow law exponent
zb Varying m Bed elevation with respect to sea level
ν 1.787× 10−6 m2 s−1 Kinematic viscosity of water
ω 0.001 Dimensionless Parameter controlling nonlinear laminar/turbulent transition
ρi 917 kg m−3 Bulk density of ice
ρw 1000 kg m−3 Bulk density of water

Table S2. Summary of seasonal hydrology- and terminus-forced simulations with meltwater

inputs to the bed in Region 1 and Region 2, firn aquifer inputs, and terminus forcing.

Simulation Region 1 Region 2 Aquifer Terminus

Seasonal Transient 0 0 Free
Seasonal+firn aquifer Transient 0 Steady Free
Enhanced melt Transient ×2 Transient ×2 Steady ×2 Free
Termforce 0 0 0 Prescribed velocity
Seasonal+termforce Transient 0 0 Prescribed velocity
Seasonal+firn aquifer+termforce Transient 0 Steady Prescribed velocity
Enhanced melt+termforce Transient ×2 Transient ×2 Steady ×2 Prescribed velocity
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Figure S1. Winter base state ice velocity and effective pressure from SHAKTI-ISSM spin-up

using MOLHO vs. SSA for ice dynamics calculations.
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Figure S2. Difference in velocity and effective pressure from SHAKTI-ISSM spin-up using

MOLHO vs. SSA for ice dynamics calculations.
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Figure S3. Winter base state ice velocity and effective pressure from SHAKTI-ISSM spin-up

using a depth-integrated flow law parameter in SSA corresponding to -15oC vs. -10oC.
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Figure S4. Difference in velocity and effective pressure between SHAKTI-ISSM spin-up using

a depth-integrated flow law parameter in SSA corresponding to -15oC vs. -10oC.

Figure S5. Model domain (black outline) overlaid on Sentinel-2 mosaic image of Helheim

Glacier.
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Figure S6. Unstructured triangular finite element mesh used in model simulations with firn

aquifer drainage points (vertices with surface elevation 1500-1515 m) indicated by red dots.
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Figure S7. Friction coefficient (note the log scale) obtained used in transient through itera-

tive spin-up inversion.
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Figure S8. Schematic of SHAKTI-ISSM simulations, including iterative spin-up inversion for

basal drag and effective pressure to generate initial winter base state.
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Figure S9. Winter state basal water flux (q), effective pressure (N), and ice sliding velocity

ub resulting from spin-up.
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Figure S10. (a-d) Change in observed velocities relative to initial winter velocity (dots; obser-

vations from ITS LIVE) with reported error (black lines) and modeled velocities (colored lines)

from the termforce+seasonal simulation. (e) Location of points A-D overlaid on satellite image.
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Figure S11. (a) Change in subglacial gap height in seasonal simulation between days 151

(minimum effective pressure at the confluence) and 157 (peak velocity at the confluence). (b)

Change in subglacial gap height in seasonal simulation between days 157 (peak velocity at the

confluence) and 163 (peak meltwater input). (c) Change in subglacial gap height in enhanced

melt simulation between days 144 (peak velocity at the confluence) and 148 (minimum effective

pressure at the confluence). (d) Change in subglacial gap height in enhanced melt simulation be-

tween days 148 (minimum effective pressure at the confluence) and 163 (peak meltwater input).
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Figure S12. Velocity vs. effective pressure hysteresis loops for simulations forced by (a)-(d)

meltwater inputs and (e)-(h) both meltwater inputs and terminus forcing.
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Figure S13. Change in sliding velocity relative to winter state in termforce simulation on

April 2 and October 2, days of minimum (a) and maximum (b) forced terminus velocity. Change

in effective pressure relative to winter state due to minimum (c) and maximum (d) terminus

velocity forcing.
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Figure S14. Change in velocity relative to winter state at point B (confluence) in seasonal

simulations forced by meltwater only, terminus forcing only, meltwater and terminus forcing,

compared to the additive velocity effects of meltwater- and terminus-forced simulations.
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