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Abstract 19 

Climate change is posing unprecedented challenges, necessitating the development of effective 20 
climate adaptation. Conventional computational models of climate adaptation frameworks 21 
inadequately account for our capacity to learn, update, and enhance decisions as exogenous 22 
information is collected. Here we investigate the potential of reinforcement learning (RL), a 23 
machine learning technique that exhibits efficacy in acquiring knowledge from the environment 24 
and systematically optimizing dynamic decisions, to model and inform adaptive climate decision-25 
making. To illustrate, we derive adaptive stratigies for coastal flood protections for Manhattan, 26 
New York City, considering continouse observations of sea-level rise throughout the 21st century. 27 
We find that, when designing adaptive seawalls to protect Manhattan, the RL-derived strategy 28 
leads to a significant reduction in the expected cost, 6% to 36% under the moderate emissions 29 
scenario SSP2-4.5 (9% to 77% under the high emissions scenario SSP5-8.5), compared to 30 
previous methods. When considering multiple adaptive policies (buyout, accommodate, and 31 
dike), the RL approach leads to a further 5% (15%) reduction in cost, showcasing RL’s flexibility 32 
in addressing complex policy design problems when multiple policies interact. RL also 33 
outperforms conventional methods in controlling tail risk (i.e., low probability, high impacts) and 34 
avoiding losses induced by misinformation (e.g., biased sea-level projections), demonstrating the 35 
importance of systematic learning and updating in addressing extremes and uncertainties related 36 
to climate adaptation. The analysis also reveals that, given the large uncertainty and potential 37 
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misjudgment about climate projection, “preparing for the worst” is economically more beneficial 38 
when adaptive strategies, such as those supported by the RL approach, are applied. 39 

Significance Statement 40 
Traditional risk mitigation frameworks are inadequate for the problems posed by a changing 41 
climate, given the substantial uncertainty in climate projections. This research highlights the 42 
potential of reinforcement learning (RL) as a powerful approach for modeling adaptive climate 43 
decision-making. By focusing on coastal flood protection strategies for Manhattan, New York City, 44 
the study demonstrates that the RL-based design can lead to substantial cost reductions 45 
compared to conventional methods. Furthermore, this study shows RL's high ability to handle 46 
complex policy designs, extreme loses, and potential expert misjudgment and, more generally, 47 
the critical role of systematic learning and updating in climate change adaptation. In addition, the 48 
analysis reveals that, “preparing for the worst” is economically more beneficial when adaptive 49 
strategies are applied. 50 
 51 
Main Text 52 
 53 
Introduction 54 
 55 
The world's climate is changing, and depending on future emissions, it may continue to change at 56 
unprecedented rates in recent human history. Planners face the daunting task of developing 57 
policies and making investment decisions for climate change adaptation in an environment that 58 
consists of complex, interlinked systems with manifold uncertainties.  59 
 60 
As the future unfolds, planners are expected to learn and respond to the new situation by 61 
adapting their plans to the new reality (1). Such flexible adaptations, if strategically planned, offer 62 
advantages over pre-planned strategies by addressing dynamic risks and uncertainties. Firstly, as 63 
long as flexibility is feasible, option holders can plan to invest in stages, facilitating an initial action 64 
at a relatively low cost. Secondly, flexible adaptation options enable adjusting actions or plans in 65 
response to unexpected future states, preventing catastrophic failures. Thirdly, option holders can 66 
take possible future actions into account in current decision-making to avoid overestimating the 67 
lifetime risk to be addressed. 68 
 69 
Flexible adaptation frameworks are referred to by diverse terms such as an “adaptation 70 
pathways” (2,3), “dynamic adaptation” (4,5), or a “real options analysis” (6,7). Several analytical 71 
approaches have been developed to implement these policy frameworks in models of adaptive 72 
climate decision-making (8,9,10). These approaches can be applied to achieve cost-benefit 73 
optimal solutions, but they have not fully addressed the potential of flexible adaptation. Table 1 74 
presents a compilation of these quantitative methods applied to environmental policy design. The 75 
methods are categorized according to their ability to (a) design dynamic policy, (b) incorporate 76 
observational data, and (c) systematically take future observations and strategy adjustments into 77 
current decision-making.  78 
 79 
The first ability allows the decision-maker to design a dynamic path for decisions over time. For 80 
example, ref. 11 used the dynamic programming (DP) method, a classical sequential decision-81 
making framework, to estimate the optimal path of seawall height based on the current projection 82 
of the future climate. Ref. 12 used heuristic algorithms, e.g., genetic algorithms that stochastically 83 
generate thousands of potential paths of the seawall height and strategically select better paths, 84 
for the multi-target design of coastal seawalls. These heuristic algorithms improve DP’s ability to 85 
handle the curse of dimensionality when the decision-making process involves many steps (12). 86 
These methods, however, assume a static base of information and do not directly address a key 87 
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advantage of flexible policy design: the capacity to learn and thus update and improve decisions 88 
as exogenous information is collected. 89 
 90 
The second ability allows the decision maker to design a dynamic path for decisions that could 91 
change with observations. Modeling updating processes becomes especially important as 92 
sometimes new information leads to scientific beliefs that diverge over time from the posteriori, 93 
which is known as negative learning (13). Bayesian dynamic programming (BDP) methods (14, 94 
15), the early attempt to incorporate observations and update in flexible policy design, employ the 95 
DP model and new observations/projections when they become available to estimate the optimal 96 
path forward. Although BDP can incorporate observations and learnings into decision-making, it 97 
does not account for future learning and updating in the current decision-making and thus may 98 
overestimate the lifetime risk to be addressed. In other words, the potential for future adjustments 99 
of decisions can affect the optimality of current decisions. Decision trees or real options methods, 100 
which generate flexible plans by searching over scenario trees, can overcome this limitation (16, 101 
17). However, the real options approach involves an event tree with scenarios exponentially 102 
increasing with the total time step of the policy pathway. Real options analysis is tractable only 103 
when the number of potential solutions and scenarios is limited. To lower the computational cost, 104 
direct policy search (DPS) approaches have been developed (18,19). These approaches model 105 
the decision at each time step as a simple function of the observation at that time step, with the 106 
parameters of the function optimized through simulations. Consequently, the intricate stochastic 107 
sequential decision problem is approximated as a parameter optimization problem. Despite their 108 
computational efficiency, these approximate approaches may still fall short of achieving true 109 
optimality in adaptive climate decision-making. 110 

 111 
Reinforcement learning (RL) is an area of machine learning concerned with how agents ought to 112 
take action in changing environmental states to maximize their cumulative rewards (20). RL 113 
approaches systematically incorporate observations and account for future outcomes and 114 
reactions, and they support policy designs over a continuous range of future environmental 115 
states. Also, various approximations (e.g., in characterizing states and rewards) can be made in 116 
RL to achieve numerical efficiency. RL has achieved significant success in various fields, 117 
including chess playing (21,22), autonomous driving (23), and robotics control (24). RL has also 118 
been employed in addressing sequential environmental decisions with large decision spaces, 119 
e.g., power storage (25) and water management (26). However, it has not yet been used to 120 
address the large uncertainty in climate risk. Here we investigate the potential and optimality of 121 
the RL method applied to adaptive climate decision-making. More broadly, we examine the value 122 
of systematic learning and updating in climate adaptation.  123 

As an example, we apply the RL method to model adaptive strategies to address coastal flood 124 
risk. Planned adaptation strategies to mitigate coastal flood risk include building protective 125 
structures such as seawalls, retrofitting structures (encouraged, for example, through incentives 126 
and insurance regulations), and relocation away from harm (through “retreat”, “withdrawal” or 127 
“buyout”)  as discussed in ref. 27. Tropical cyclones (TCs) may lead to higher storm surge under 128 
climate change (27-31). Sea level rise (SLR) has been and will continue to be a major factor in 129 
coastal flooding. However, future SLR projections are characterized by large and deep 130 
uncertainties that currently impede the modeling of optimal risk mitigation strategies (27,32-36). 131 
Here we develop RL methods to calculate optimal coastal risk mitigation strategies (including 132 
adaptive seawall and combined strategies involving withdrawing, retrofitting, and dike) for 133 
Manhattan in New York City (NYC) that incorporate continuous SLR observations over the 21st 134 
century (Methods). The RL method efficiently handles the computational cost, which would grow  135 
exponentially as the number of SLR scenarios and temporal resolution of decision updates in 136 
traditional algorithms increase, through state and reward approximation methods (Methods; 37). 137 
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We focus on coastal flood risk management to evaluate the effectiveness of RL, in the wider 138 
realm of optimization frameworks for climate adaptation strategies. In comparison with some of 139 
the above-mentioned frameworks (DP, BDP, and DPS), our analysis shows the superior 140 
performance of the RL method in deriving flexible strategies that minimize cost and tail risk. We 141 
also found that the RL framework shows the highest ability to attain the best economic reward 142 
when the climate projection is biased. The results highlight the importance of continuous learning 143 
and systematic adaptation in combating the large uncertainty in climate projections and the 144 
potential of the RL method for modeling optimal climate adaptation strategies. 145 

Coastal Protection for Manhattan, NYC 146 
Superstorm Sandy in 2012 caused devastating flood damage to both New Jersey (NJ) and NYC, 147 
demonstrating the high vulnerability of the areas to storm surge flooding (38,39,40). In response, 148 
The BIG U (Fig.1a) was planned as a protective system around the low-lying topography of 149 
Manhattan. The United States Department of Housing and Urban Development (HUD) has 150 
dedicated a total of $511 million, including Rebuild by Design and National Disaster Resilience 151 
Competition funding, toward the implementation of the “BIG U” (41). A potential gateway across 152 
the New York Harbor to protect the greater New York area for an  estimated cost of $119 billion 153 
and taking 25 years to build, was considered by the US Army Corps of Engineers (USACE,42). 154 
This plan, however, has been abandoned. Without the gateway, the USACE proposed two other 155 
local protection plans with multiple strategies, including building spatially varying dikes and retreat 156 
of certain communities around the NYC area. The latter USACE plans are currently under review. 157 
To develop analytical methods, we focus on the protection for lower Manhattan and make 158 
comparisons between various analytical designs with The BIG U design.   159 
 160 
Studies seeking an analytical solution for coastal protection typically suggest that the height of 161 
levees be adapted to certain flood return levels (43-45). This approach is followed by the 162 
Netherlands, a country where a substantial portion of the land is situated below sea level (46), 163 
and also by the BIG U design for NYC (41; Fig.1a). However, this approach, in the quest for a 164 
simplified closed-form optimal solution for coastal protection, predetermines the return period of 165 
floods to design for. Also, because of the heritage of static infrastructure design, most designs or 166 
studies consider a static coastal protection strategy, such as the BIG U (New York) or Harbor 167 
Barrier (NYC-NJ area; 47). However, many coastal cities, including NYC and Shanghai (48), had 168 
to reactively elevate seawalls following significant storm surge/flood events. 169 
 170 
Ref. 11 brought forward a viewpoint that dynamic design can improve the economic performance 171 
of the seawall and the evolving seawall height can be estimated by DP. However, ref. 11 derived 172 
a deterministic design of seawall height over the whole life cycle at the beginning of the project, 173 
and the study did not illustrate the advantage of using future observations to update the 174 
decisions. Ref. 15 quantified the value of information updating by applying DP to obtain a new 175 
seawall design given the climate projection based on new observations (BDP). Though the 176 
design in ref. 15 involved current observations in the optimization framework, it did not involve the 177 
advantage of considering potential future observations and updates. An adaptation pathway 178 
approach, partially considering this flexibility, usually enumerates decisions including seawall 179 
height over limited climate scenarios (2,3). Decision-tree-based methods or real options 180 
approaches have also been employed to reach an optimal life cycle cost in seawall design with 181 
few (<3) time steps and limited scenarios (7). On the other hand, ref. 18 employed a DPS 182 
approach to allow seawall decisions to flexibly change with sea level observations. The DPS 183 
approach is computationally efficient, but it may not achieve true optimality in the seawall design. 184 
Here we apply the RL framework to design an adaptive seawall for lower Manhattan in NYC (Fig. 185 
1a) that will be raised over time (e.g., every ten years over the 21st century) in response to SLR 186 
observation and projection update. RL enables a systematic consideration of climate 187 
observations and decision updates to achieve the lowest lifecycle cost compared to previous 188 
methods. For benchmarks, we compare the estimated economic rewards and tail risks of the RL 189 
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strategies with those of the Big U flood protection plan and other adaptation frameworks, 190 
including DP, BDP, and DPS. 191 
 192 
Furthermore, we consider the application of RL in modeling broader strategies for coastal flood 193 
risk management. Specifically, we apply the RL framework to model an integrated strategy 194 
combining policies of regional protection (e.g., flood walls, levees, dikes), building-level 195 
retrofit/accommodation (e.g., elevating or waterproofing buildings), and coastal retreat/withdrawal 196 
(e.g., buyout by the government). These are three typical coastal flood protection measures 197 
considered in the new USACE proposal (42) and IPCC typical coastal protection types (27). In 198 
this integrated strategy, we assume the retreat zone is always lower in altitude than the 199 
accommodate zone, and the dike is built behind the accommodate zone (Fig. 1b), following ref. 200 
49, which found that retrofitting behind seawalls is generally not cost-beneficial. Refs. 49, 50, and 201 
51 discussed the performance (economic outcomes) of such combined defensive strategies 202 
under several potential policy pathways; here we apply RL to find the adaptive implementation 203 
time paths of these defensive strategies. The multidimensional policy suggestions given by the 204 
RL approach are compared with the one-dimensional seawall designs for lower Manhattan. 205 
 206 
Experimental Settings 207 
Here we employ two cases to illustrate the RL optimization framework. In Case I we design an 208 
adaptive seawall; in Case II we design three adjustable defensive strategies, including 209 
withdrawal, retrofitting, and dike. For both Case I and Case II, we minimize the net present value 210 
(NPV; 3% discount rate) of expected policy implication cost and damage. We define the decision 211 
space over a finite time horizon (starting in 2000 and ending in 2100), where choices are made 212 
sequentially in discrete time periods (every 10 years). We posit that the strategies may be 213 
adjusted in response to observed SLR every decade and updated future SLR projections. In our 214 
illustrative experiments, for every 10-year time period, we adjust the distribution of projected 215 
future SLR based on the current and past SLR observation. Specifically, for each sampled SLR 216 
observation at each time point, we assess the similarity between all SLR realizations (~80,000) 217 
and this observation using the root mean square distance. Based on the similarity, we use a 218 
discrete choice model to determine the likelihood/weight of each SLR realization to obtain an 219 
updated distribution of future SLR. The adaptation strategies at the current time point are then 220 
determined based on the adjusted/updated future SLR projection. Through performing a large 221 
number of experiments, we obtain samples of adaptation designs and access their statistics. 222 
 223 
Coastal flooding is induced by storm tide (storm surge plus the astronomical tide) on top of the 224 
mean sea level. Storm tide risk is projected to increase for NYC and the many other areas along 225 
the U.S. East and Gulf coastline, driven by projections of increased risk associated with storm 226 
surge (27-31) and SLR (32-34) over the 21st century under climate change. In our analysis, the 227 
annual flood hazard distribution is estimated by combining the distributions of annual maximum 228 
storm tide (52) and SLR (33). Both the storm tide and SLR distributions were generated based on 229 
CMIP6. To illustrate the performance of the RL method in managing climate extremes, we 230 
consider the moderate emissions scenario, which is Shared Socioeconomic Pathway(SSP)2 4.5, 231 
which aligns with the emissions forecasts under current climate policies, as well as the very high 232 
emissions scenario, SSP5 8.5 (53). Later we design an experiment to assess the robustness of 233 
the proposed strategies when the climate projection is biased (e.g., decisions are made under the 234 
projections for SSP2 4.5, but the climate change actually experienced is closer to that projected 235 
for SSP5 8.5 due to high climate sensitivity and strong carbon cycle feedbacks). For each year 236 
over the planning horizon, flood levels are sampled from the annual flood hazard distribution. A 237 
static inundation analysis is performed to estimate the inundation and total damage for each flood 238 
level (see Methods). If the seawall is higher than the flood height, no damage is assumed for the 239 
area protected by the seawall. If a property is inundated, the damage/loss is estimated by the 240 



 

 

6 

 

vulnerability function developed by the Federal Emergency Management Agency (FEMA, 54). 241 
The annual damage/loss distribution is thus obtained and used in the optimization analysis.   242 
 243 
We first employ a one-dimensional seawall design problem to illustrate the optimization 244 
framework (Case I). We assume the presence of a seawall around the BIG U area (Fig. 1a). We 245 
employ the RL technology to obtain the optimal time path of seawall height over the 21st century 246 
in response to each realization of the SLR observation. To illustrate the advantage of the RL-247 
based design, we compare it with the BIG U's current plan (based on the flood return level) and 248 
with static optimal (SO; based on cost-benefit analysis), DP, BDP, and DPS strategies in terms of 249 
their total expected cost, risk of extreme losses, and costs/losses when the SLR and TC 250 
climatology projections are biased (e.g., due to uncertainties in emissions and in the climate and 251 
sea-level response to the emissions).  252 
 253 
For the same region, we then apply RL to derive the optimal multi-dimensional design including 254 
the three adjustable defensive strategies: i) withdrawal from at-risk areas, ii) improving resistance 255 
to damage, and iii) construction of a dike (Case II, Fig. 1b). All three strategies are adaptive over 256 
time. We assume the decision maker first plans the ground elevation of the dike, as once the 257 
foundation of the dike is fixed, it cannot be relocated. They then gradually buy out the properties 258 
in the retreat zone, retrofit the buildings in the accommodate zone, and building up the dike. 259 
Different from direct buyout/retrofitting all the properties at once gradually applying these plans 260 
could both save the time value of the investment and buyout/retrofit those properties at the most 261 
cost-efficient time point given evolving climate conditions. The multidimensional policy 262 
suggestions given by the RL approach are analyzed and compared with the one-dimensional 263 
seawall designs. These arrangements for the retreat and accommodation zones may not be the 264 
only possibilities.  Here we focus on mathematical optimizations under the single economic 265 
target. The RL method may be extended in the future to consider other objectives such as social 266 
inequality. 267 
 268 
Results 269 
Case I. Dynamic Seawall Design 270 
In Case I, we design the seawall around lower Manhattan. Different methods suggest different 271 
seawall height time series, as shown in Fig. 2. We consider SLR in NYC relative to the sea level in 272 
the year 2000 (7.0 inches above NAVD 88). The median of SLR projection under SSP2 4.5 for the 273 
end of the 21st century is lower than under SSP5 8.5 by 1.5 ft. The storm tide return level under 274 
SSP2  4.5 is also significantly lower than that under SSP5 8.5. As a result, the seawall design under 275 
SSP2 4.5 is significantly lower than that under SSP5 8.5. As a reference, the Big U original design 276 
is shown as the green line, which is static at 16 ft. This height was determined based on the 100-277 
year flood height from the FEMA flood map and the upper 1% projected SLR in 2050 (41). Based 278 
on life-cycle cost analysis, for SSP2 4.5 (SSP5 8.5), we found the SO level (black curve) for the 279 
seawall around the Big U area to be 15.2 (19.5) ft. For DP (blue line), under SSP2 4.5, the seawall 280 
height starts at 11.3 ft, and it reaches a final level of 15.0 ft in 2070, close to the SO level. Under 281 
SSP5 8.5, the seawall height starts at 9.1 ft, which is substantially lower than SO, and it increases 282 
over time quickly to 16.5 ft by 2050 and 25.1 ft by the end of the century. RL strategy suggests a 283 
stochastic path of seawall height changing with observed SLR conditions (as well as the BDP and 284 
DPS strategies, which are not shown in the figure for clarity). The red line shows the 50% quantile 285 
seawall height suggested by RL. The red shade shows the probability density of the RL strategy, 286 
varying with the SLR observation. The median initial seawall height is 9.1 (9.1) ft, and the median 287 
final height is 15.4 (20.9) ft, both of which are similar to or lower than the DP strategy.  However, 288 
under extreme SLR cases (<1%), the final seawall height determined by RL could be around 17.8 289 
(29.1) ft. On the other hand, if the sea level remains at a lower level (<1%), the RL algorithm would 290 
suggest a final seawall height of only around 13.4 (18.3) ft. 291 
 292 
Different seawall strategies would lead to different expected life-cycle total costs (sum of investment 293 
and damage). Under SSP2 4.5 (SSP5 8.5), the total cost for NYC would be on average 1.40 (6.45) 294 
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billion dollars under the Big U design, 1.34 (2.91) billion for the SO, 1.08 (1.89) billion for the DP, 295 
0.95 (1.59) billion for the BDP, 0.98 (1.61) billion for the DPS, and 0.89 (1.45) billion for the RL 296 
strategy. The results indicate that under the uncertain climate change projection, a slight change 297 
in the coastal protection design considering cost-benefit (from 16-ft Big U to 15.2 (19.5)-ft SO 298 
strategy) will lead to a ~5% (55%) lower total cost. Considering dynamic design can earn an 299 
additional ~20% (35%, comparing DP with SO) to ~50% (35%, comparing RL with SO) for the NYC 300 
coastal protection problem. Compared to these previous methods, the RL strategy leads to a 6% 301 
to 36% (9%-77%) reduction of the expected total costs.  302 
 303 
RL strategies have cost advantages over other strategies because RL is designed to systematically 304 
respond to SLR observations. To illustrate the dynamic response of the RL strategy to SLR 305 
observations over time, Fig. 3 presents example trajectories of seawall height design under three 306 
SLR observations. For each case, the time history of the final-stage (2100) SLR estimation with 307 
associated uncertainty is also shown (mid-panel). Fig. 3a shows a case where the observed SLR 308 
is near the high end of the projected distribution at the beginning, and it increases with an even 309 
deeper slope towards the end of the century. The uncertainty of the final-stage SLR estimation 310 
does not narrow until late in the century. The designed path of seawall height thus increases over 311 
time (from blue to yellow). The planned final seawall height increases from 20.5 ft estimated at 312 
2030 to the final level of 25.9 ft. Fig. 3b illustrates a highly uncertain SLR scenario, where the SLR 313 
starts on the low end of the projected distribution, becomes an extreme case by 2020, and then 314 
changes back to the median of the distribution towards the end of the century. The uncertainty of 315 
the final-stage SLR estimation remains large until the end of the century. This scenario represents 316 
a “negative learning” case (13). Accordingly, the recommended final seawall height keeps changing 317 
from 19.7 ft at the beginning, to 25.5 ft in 2050, and back to 20.5 ft in 2100. Fig. 3c shows a case 318 
in which the SLR starts at the lower end and gradually increases to the median level. The 319 
uncertainty of the final-stage SLR estimation significantly narrows from the mid-century. In this 320 
case, the planned final seawall height does not change significantly over time (from 18.2 ft to 20.7 321 
ft). 322 
 323 
In general, predicting SLR more accurately in its early stages, if possible, would lead to a better 324 
estimation of policy expenditures. Conversely, if SLR remains highly uncertain over a prolonged 325 
period, the implemented decisions will deviate significantly from the initial estimations, resulting in 326 
a more uncertain budget.  For example, when negative learning occurs, new information leads to 327 
increasing divergence of even confident projections from the true outcome (13,55), so caution 328 
must be exercised in foreclosing options prematurely. 329 
 330 
Case II. Multi-Dimensional Risk Management Strategy 331 
In Case II, we discuss a combination of three adjustable defensive strategies: i) withdrawal from 332 
at-risk areas, ii) improving resistance to damage, and iii) construction of a dike. The retreat zone is 333 
always lower in altitude than the accommodate zone, and the dike is built behind the accommodate 334 
zone. Given the potential retreat zone boundary and accommodate zone boundary, the RL 335 
algorithm can be applied to search for the optimal design of these zones (i.e., the temporal evolution 336 
of the retreat and accommodation zones towards their boundaries and the temporal evolution of 337 
the dike height) and estimate the expected total cost. Thus, the RL framework is applied to all 338 
possible zone boundaries to search for the optimal design. 339 
 340 
Searching over potential retreat and accommodation zone boundaries for SSP2 4.5 (SSP5 8.5), 341 
the analysis suggests building a dike on the 12 (17)-ft high ground and withdrawing the properties 342 
located below the 6 (8)-ft ground elevation. Fig. 4 shows how various costs change with different 343 
dike foundation elevations, given the optimal retreat zone boundary of 6 (8) ft. The total cost is 344 
separated into four parts: property damage, buyout cost (inside retreat zone), retrofit cost (inside 345 
accommodate zone), and dike construction cost. The total cost (blue curve) decreases with the 346 
dike foundation elevation until it reaches 12 (17) ft (i.e., the optimal level), and then the total cost 347 
increases with the dike foundation elevation. The dike construction cost (orange curve) decreases 348 
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with the dike foundation elevation. The buyout cost (yellow curve) increases initially with the dike 349 
foundation elevation. When the dike foundation elevation is higher than 6 (8) ft, the buyout cost is 350 
constant as the buyout zone is limited to regions with ground elevation lower than 6 (8) ft. If the 351 
dike foundation height is lower than 6 (8) ft, then no accommodate zone will be designated. The 352 
retrofit cost (purple curve) increases consistently when the dike foundation elevation is larger than 353 
6 (8) ft since all the properties between the buyout zone and the dike foundation elevation should 354 
be retrofitted. The damage (green curve) is not sensitive to the dike foundation elevation when the 355 
dike foundation elevation is lower than 6 (8) ft. However, when the dike foundation elevation is 356 
larger than 6 (8) ft, the damage decreases due to the retrofit of properties inside the accommodate 357 
zone. The damage slightly increases when the dike foundation elevation is larger than 12 (17) ft. 358 
This increase occurs because it would not be cost-beneficial for properties above 12 (17) ft to be 359 
retrofitted, and when those properties are not protected by a dike, the potential damage increases. 360 
Under the optimal strategies combination for Case II, the expected life-cycle cost for the flood 361 
management project is 0.85 (1.24) billion, which saves 5% (15%) compared to the optimal value 362 
we obtained in Case I (0.89 (1.45) billion). 363 
 364 
Given the optimal withdrawal and accommodate zone boundaries, the RL strategy suggests 365 
gradual relocation/retrofit of properties in retreat/accommodation zones (Fig. 5). Under SSP 2 4.5, 366 
the withdrawal mainly happens between 2040-2060 (magenta curves). The development of the 367 
accommodation zone starts in the first decade; however, it could last over the century (blue curves). 368 
The dike has two significant elevation time points, one at 2030 and the other at 2070. The median 369 
final dike height is 17 ft above the mean sea level, but 5 ft above the dike foundation with a lower 370 
5% level of 3 ft and an upper 5% level of 7 ft. Under SSP5 8.5, during the first 20 years, those 371 
properties under the 5-ft ground elevation will be relocated for most SLR scenarios, and the majority 372 
of the properties in the retreat zone will be relocated before 2090 under any SLR condition 373 
considered (magenta curves). Also, the majority of the properties inside the accommodation zone 374 
should be retrofitted before 2090 (blue curves). In most cases, the results do not suggest building 375 
the dike in the first half of the 21st century. In other words, our findings indicate that initiating dike 376 
construction before 2050 is not imperative. This result provides significant flexibility in policy 377 
implementation, especially since the dike construction represents the sole sunk cost across the 378 
three types of policies. The median final dike height is 22 ft above the mean sea level, but 5 ft 379 
above the dike foundation with a lower 5% level of 3 ft and an upper 5% level of 12 ft.  380 
 381 
Compared to Case I, where the anticipated final dike height stands at 15.4 (20.9) ft above the 382 
foundation, the constructed dike height for Case II is substantially lower. Unlike in Case I, the dike 383 
in Case II, when combined with withdrawal and resistance strategies, is not intended to safeguard 384 
properties located in low-lying areas. Compared to the SSP5 8.5 scenario, the suggested retreat 385 
and accommodation zones are narrower, and the dike height is lower under the SSP2 4.5 scenario, 386 
given its lower storm surge and SLR projection. However, the RL result suggests starting to build 387 
the dike earlier, in 2030, as earlier protection is needed when much of the coastal areas is not 388 
retreated or retrofitted.   389 
 390 
Similar to Fig. 3, Fig. 6 shows how the designed zones and dike heights change over time with the 391 
three illustrative SLR scenarios. In general, the results closely resemble those of Case I. Under the 392 
first case (Fig. 6a), where the sea level rises sharply with increasing uncertainty, the projected final 393 
dike level increases quickly, from 22 ft to 27 ft. The retreat and accommodation zones are projected 394 
to be fully developed earlier as time goes on (zone development curves shifting to the left). 395 
However, when there is increased uncertainty in SLR projections, the plans may exhibit more 396 
substantial changes than in Case I. Notably, in Fig. 6b, where negative learning occurs, the 397 
accommodation and retreat zone are projected to develop rapidly early on, but later the projection 398 
scales back (i.e., the zones do not need to be fully developed until later in the century). The 399 
projected final dike level in the early decades is very high (10 ft above the foundation), while the 400 
final construction is much lower (5 ft). In Fig. 6c, where the SLR gradually increases with narrowing 401 
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uncertainty, the three protection measures develop slowly over time and the final results are close 402 
to the early projection. 403 
 404 
 405 
Tail Risk 406 
To investigate the tail risk from different design strategies, we show the tail of the distribution of the 407 
present value of the total cost (damage and construction) of the BIG U design, SO, DP, BDP, DPS, 408 
RL, and combined multi-dimensional RL strategies under SSP2 4.5 (SSP5 8.5) in Fig. 7. First, we 409 
compare the tail risk for the strategies in Case I. At a 1% exceedance level, the total cost under the 410 
Big U seawall design is 2.7 (10.1) billion. The corresponding cost for SO and DP strategies is 411 
around 4.0 (4.8) and 2.7 (2.5) billion, for DPS and BDP strategies is around 1.3 (2.7) and 1.2 (2.5) 412 
billion, and for RL strategy is around 1.2 (2.1) billion. At the 0.1% exceedance level, total cost for 413 
the Big U/SO/DP/BDP/DPS strategies is 8.7 (1200) /15.2 (522) /9.9 (215) /1.2 (3.5) /1.1 (1.1) times, 414 
respectively, that for the RL strategy. There is still a small chance (>0.01 %) for the static, DP, or 415 
BDP strategy to bear an extreme total cost exceeding 20 billion under SSP5 8.5, but this probability 416 
for the RL strategy is negligible (no realization within one million samples). These results 417 
demonstrate the outstanding risk control ability of the RL method. Usually, a strategy with a lower 418 
expected total cost will hold a higher uncertainty (risk) in the cost. However, the RL and, to a lesser 419 
extent, BDP and DPS strategies outperform other strategies at controlling both expected cost and 420 
risk, demonstrating the benefits of “observing and updating.” 421 
 422 
Secondly, we compare the RL strategy in Case I with the multiple strategies (MS) in Case II. 423 
Compared to the RL strategy, employing multiple strategies does not guarantee a lower total cost 424 
for 1% level events; in fact, it results in a 5% higher cost for SSP2 4.5 and a 5% lower cost for 425 
SSP5 8.5. This difference is induced because the RL and MS methods adhere to the same 426 
optimization framework, where a lower expected cost may be associated with a higher degree of 427 
risk. For example, comparing to build a seawall initially to protect the low-lying community, gradually 428 
retreating residents may lead to large losses if a severe storm surge occurs at the early stage. 429 
However, the tail risk for MS is still very small, compared to other methods. 430 
 431 
Robustness of Decisions under Misinformation and Uncertainty of Climate Projection 432 
The uncertainty surrounding future climate outcomes arises not only from climate modeling but also 433 
from factors related to emission scenarios and unknown physics. Expert opinion and model 434 
outcomes on the dynamical response of ice sheets and its impact on sea levels is characterized by 435 
increasing uncertainty after the middle of the 21st century and ambiguity due to lack of expert 436 
consensus thereafter (27,33,56). Under extreme cases, one could envision positive feedbacks that 437 
led to a SLR response closer to that in SSP5 8.5 under median climate sensitivity and carbon cycle 438 
feedback even when the emissions are moderate. This uncertainty leads to the pressing question: 439 
how robust is the decision-making framework under RL when the selected climate projection or 440 
scenario by policymakers diverges from the actual trend? 441 
 442 
This section evaluates the robustness of the discussed analytical approaches for climate adaptation 443 
in achieving economic gains under biased climate projections through a counterfactual experiment. 444 
Two benchmark scenarios are employed: one where the coastal protection is designed based on 445 
the a version of the SLR projection for SSP5 8.5 that incorporates high-end, low-confidence 446 
estimates of ice-sheet loss based on structured expert judgement (henceforth, SSP5 8.5 LC; 62,63) 447 
and matched with reality, and another where the coastal protections are designed based on the 448 
standard, medium-confidence projections for SSP2 4.5 (SSP2 4.5 MC) that do not incorporate 449 
deeply uncertain ice-sheet processes with the potential to drive rapid ice sheet losses (See 450 
Methods on details of SLR scenarios). Additionally, two counter experiments are conducted: one 451 
where the coastal protections are planned for SSP5 8.5 LC while reality exhibits SSP2 4.5 MC , 452 
and the other where the coastal protections are planned for SSP2 4.5 MC while reality exhibits 453 
SSP5 8.5 LC. These experiments assume that policymakers do not alter their belief in future 454 
scenarios over time. In other words, policymakers who believe in the SSP5 8.5 LC scenario, even 455 
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if the observation aligns with SSP2 4.5 MC and SLR appears to be low, consider the observation 456 
a lower probability case within SSP5 8.5 LC, and vice versa. 457 
 458 
Table 2 presents the expected costs for each of the four cases. Overall, employing the RL 459 
framework results in lower expected total loss and policy expenditure (total cost of construction, 460 
residents' withdrawal, and structure retrofitting, i.e., expected total loss minus the expected 461 
damage) in every case, and the multiple strategies framework is superior to the seawall strategy. 462 
Additionally, the difference between the expected losses of cases without and with the correct 463 
climate scenario belief for the same climate scenario could be defined as the “bias loss.” It is 464 
generally observed that implementing flexible adaptation strategies, especially RL and MS (multiple 465 
strategies with RL), reduces the bias loss. For example, with the belief that SSP2 4.5 MC (SSP5 466 
8.5 LC) will occur, the bias loss under SO is 11.58 (1.02) billion, which is 79% (90%) larger than 467 
that under MS. Moreover, bias loss tends to be lower for plans designed under the belief that SSP5 468 
8.5 LC will occur (while in reality SSP2 4.5 MC occurs) compared to those designed under the 469 
belief that SSP2 4.5 MC will occur (while in reality SSP5 8.5 LC occurs). For example, the bias loss 470 
for SO, DP, and RL under the belief that SSP2 4.5 MC would happen is 11.5, 17.0, and 17.0 times 471 
of that under the belief that SSP5 8.5 LC would happen. 472 
 473 
Discussion  474 
 475 
In this study, we analyzed the RL method, among various optimization approaches, for flood 476 
adaptive design and applied the analysis to Manhattan, NYC. The methods hold potential for 477 
broader application in various climate adaptation scenarios, provided that the life-cycle benefit 478 
serves as the optimization objective. The RL framework exhibits a versatile capability in achieving 479 
optimal decisions, particularly when the temporal evolution of climate or environment can be 480 
estimated probabilities conditioned on the current state's information. 481 
 482 
In terms of minimizing the expected life-cycle cost, there exists a performance ranking from RL, 483 
BDP/DPS, and DP to SO methods. The cost for learning-based adaptive methods is lower than 484 
non-adaptive methods because the adaptive methods can respond to the observation and adjust 485 
strategies to control risk. Also, the initial investments suggested by adaptive methods are lower 486 
than those by non-adaptive methods. Specifically, the static strategies need to be “conservative” 487 
as they are determined to cover the large uncertainty and risk for their entire lifecycle while 488 
adaptive strategies can be more “aggressive” at the start as they can adjust themselves over time 489 
according to future observations. 490 
 491 
As both the large uncertainty and high initial investment reduce stakeholders’ willingness to 492 
implement protective strategies proactively rather than waiting for disasters to strike, the adaptive 493 
design provides a promising approach for climate adaptation.  Stakeholders may be more willing 494 
to invest in a policy or project that can respond to future scenarios, especially given the lower 495 
initial cost. 496 
 497 
The RL approach has advantages over other adaptation decision-making methods that can 498 
consider only a limited number of pre-defined climate change scenarios. Also, the RL method 499 
could flexibly be extended to coordinate multiple risk-mitigation policies. As shown in this paper, 500 
when applying multiple types of measures at the same time, the combined flood risk mitigation 501 
strategies are expected to be more effective than a single risk mitigation strategy, especially in 502 
controlling the total cost. This observation highlights the importance of coordinating multiple 503 
policies to address diverse environmental adaptation challenges. This collective approach might 504 
hold greater significance than optimizing individual policies independently, and the RL framework 505 
can facilitate such a collective approach by synergizing multiple types of stratigies and navigating 506 
intricate problem spaces. 507 
 508 
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From a project management perspective, it is well understood through the lens of the Capital 509 
Asset Pricing Model (CAPM; 59) that expected returns typically rise in tandem with risk. The 510 
trade-off between risk and return is a foundational principle in finance and investment theory; this 511 
tradeoff forms a Pareto front. For example, robust decision-making methods, such as minimax 512 
regret and information gap analysis, have been applied to formulate decisions aimed at mitigating 513 
extreme potential outcomes on one end of the Pareto front (5, 60). In this context, the distinctive 514 
performance of the RL approach is particularly noteworthy. It not only minimizes economic 515 
losses, but also effectively manages the tail risk, ensuring the avoidance of extreme impacts. The 516 
efficacy of RL comes from its systematic incorporation of new observations into dynamic 517 
decision-making, outperforming the Pareto front of frameworks that employ only current 518 
information and/or static adaptation. In addition to risk and return, the RL framework can be 519 
extended to consider other objectives such as social inequality (61) by incorporating these 520 
objectives with weighting factors into the optimization. 521 
 522 
Additionally, our findings indicate that the bias loss tends to be lower when decisions are 523 
developed assuming high impact scenarios while low impact scenarios occur in reality, compared 524 
to plans created assuming low impact scenarios while in reality high impact scenarios take place. 525 
This result indicates the significant role of extremes in contributing to the total loss. Adapting to 526 
low or moderate impact scenarios when in reality high impact scenarios occur makes it difficult to 527 
avoid impacts from extremes. Therefore,  planners are advised to adopt systematically adaptive 528 
decision-making tools, such as RL, and a "prepare-for-the-worst" approach (if multiple scenarios 529 
are equally likely) when designing adaptation strategies under uncertain climate change 530 
scenarios. 531 
 532 
Adaptation decisions in our modeling framework are a highly simplified compared to real-world 533 
adaptation decisions (56; 57; 58). In our model, we seek simply to minimize the net financial cost 534 
of coastal damages and adaptation measures. In the real world, many values are at stake in 535 
adaptation decisions, and different players have both different values and different power to make 536 
their values influence final decisions. In addition, the idealized, continually updated adaptation 537 
decisions we find minimize cost neglect the practicalities of political economy: for example, 538 
whether funding and political will are continually available to operationalize them. Future modeling 539 
efforts could start to represent potential frictions. Nonetheless, models such as ours can be 540 
valuable guides to the players involved in such complex processes, and our results highlight the 541 
potential order-of-magnitude value that could be achieved through an iterative and flexible 542 
approach to urban coastal adaptation. 543 
 544 
 545 
Materials and Methods 546 
 547 
Simulated storm surge events 548 
The current (1981-2000) and future (2081-2100) annual storm tide distributions come from ref. 52 549 
for both SSP5 8.5 and SSP2 4.5, modeled using a coupled climatological-hydrodynamic model. 550 
The simulation methods have been used in previous coastal adaptation analyses (e.g., ref. 47). 551 
The storm tide distributions are linearly interpolated to the analysis time points over the 21st 552 
century. 553 
 554 
Projection of sea level rise 555 
We employed sea-level projections produced by the Intergovernmental Panel on Climate Change 556 
Sixth Assessment Report (AR6; 33, 62) using the Framework for Assessing Changes To Sea-557 
level (FACTS; 63). AR6 produces four alternative probability distributions (‘workflows’) for 558 
trajectories of future global-mean and local relative sea-level rise for each SSP. Workflow 1f 559 
employs ice-sheets calibrated to the Ice Sheet Model Intercomparison Project (64), while 560 
workflow 2f substitutes Antarctic Ice Sheet projections based on the Linear Response Model 561 
Intercomparison Project 2 (LARMIP2; 65). AR6 judged these two workflows to represent sea-level 562 
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processes in which there is at least a medium level of evidence and agreement, and thus 563 
‘medium confidence.’ Workflow 3f substitutes the Marine Ice Cliff Instability-representing model of 564 
ref. 66, while workflow 4 substiutes for both Antarctic and Greenland ice sheets the structured 565 
expert judgement projections of ref. 67. AR6 judged these two workflows to represent processes 566 
for which there is limited evidence and agreement, and thus ‘low confidence.’ 567 
 568 
The sea-level projections take into account ocean thermal expansion and dynamics, cryosphere 569 
and land-water storage change, vertical land motion, and spatially varying responses of the geoid 570 
and the lithosphere to shrinking land ice. This approach resulted in a dataset of 20,000 individual 571 
SLR trajectories generated for each SSP and workflow from 2000 to 2100; each trajectory 572 
contains data points at ten-year intervals, providing a comprehensive collection of SLR 573 
projections. In the main analysis, we combine the four workflow projections under each SSP 574 
using equal weighting. In the robustness analysis, SSP2 4.5 MC is based on workflow 1f, while 575 
SSP5 8.5 is based on workflow 4. 576 
 577 
Building-level information 578 
Data for the 43,000 buildings in Manhattan, NYC, have been processed from the MapPLUTO 579 
database of the NYC Department of City Planning. This database contains various information 580 
about each building: the number of stories, the building type, the year of construction, the year of 581 
renovation, the building's assessed value, and the square footage. We consider future property 582 
development based on statistical projection (logistic regression of total property volume on the 583 
year of construction and unified by House Price Index trends).  584 
 585 
The LiDAR digital elevation model (DEM) data for all of NYC, with a resolution of 1 foot, has been 586 
obtained from the Department of Environmental Protection. To estimate damage from each flood 587 
level on the flood distribution, we apply DEM to estimate the inundation from each flood level. 588 
Then the property damage is estimated based on the vulnerability function, which maps the 589 
percentage of property loss to inundation depth given the building type. 590 
 591 
The cost of mitigation measures considered in this study includes flood wall construction and 592 
building retrofit (including elevation and making lower floors waterproof). Here we consider the 593 
two main sources for flood wall construction; the unit construction cost of the flood wall used is $ 594 
2.2 million per mile length per foot height, and each elevation has a fixed cost of $1.6 million per 595 
mile length (47). The elevation and waterproofing costs for buildings differ for structure types and 596 
are obtained from FEMA (54). 597 
 598 
Total Loss under Case I 599 

For Case I, we minimize the expected total cost for the Manhattan seawall project under Case I. 600 
The objective function for seawall height management, which is defined as the expected life-cycle 601 
cost for T years with a discounting rate r, can be separated into two parts: expected damage for 602 
the protected area and the construction cost. Considering that the seawall cannot be upgraded at 603 
arbitrary time points in reality, here we assume that we upgrade the seawall height (𝐴!) at the end 604 
of every 𝛿 years and solve this optimization problem at discrete times. Here we assume that T is 605 
divisible by 𝛿 and 𝐴 (a vector of seawall height in the time sequence; regarding the initial seawall 606 
height as 𝐴" and 𝐴# = 0 ft) is a 𝑘 dimension vector (𝑘 = 𝑇/𝛿). Here we assume that the expected 607 
damage for the considered area for a specific time (t) is related to current seawall height A$!"%&"

. 608 
The cost of construction is a function of both A$!"%&"

 and A$!"%
. Under these settings, the objective 609 

function (NPV of the life-cycle cost) is: 610 
𝐿+𝐴!, = ∫ .𝐷+𝐴, 𝑠! , 𝑝!, + 𝐶+𝐴,5𝑒'(!

)
# ≈ ∑ ∑ [𝐷(𝐴* , 𝑠*+&,, 𝑝*+&,) ++

,-"
.
*-"611 

𝐶(𝐴* , 𝐴*'", 𝑚)]𝑒'((*+&,)																(1) 612 
with the constraint that seawall height should never decrease (𝐴*&" ≥ 𝐴* , ∀𝑖 ≥ 0).  613 
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The construction cost is calculated as a linear function of the seawall increment and happens only 614 
at the beginning of each period (increment should be larger than 1.0 ft per time under Case I, no 615 
minimum increment under Case II).  616 

𝐶(𝐴* , 𝐴*'", 𝑚) = 	B
∫ (𝐶1 + 𝐶*𝑙(𝐴*))𝑙(ℎ)𝑑ℎ
2#
2#$%

, 𝑖𝑓	𝑚 = 1
0, 𝑒𝑙𝑠𝑒

                     (2) 617 

where 𝐶1 is the unit price for the seawall ($/mile/ft) and l(h) is the length of the seawall that needs 618 
to be constructed. l(h) is the length of the coastline below the elevation level h. The fixed cost 619 
(staging, foundation, etc.) is linear with the total length of construction with a unit price 𝐶* ($/mile).  620 
The expected damage (𝐷+𝐴⃗, 𝑠! , 𝑝!,) could be calculated given SLR distribution (𝑠!) and annual 621 
storm tide distribution (𝑝!) for time point t. The i th increment of the seawall covers the city for 𝛿 622 
years, and for a specific year y in that period, the damage function can be calculated as: 623 
 624 
𝐷+𝐴! , 𝑠3, 𝑝3, = ∫ 𝑒(𝑡)𝑑(𝑥).∫ 𝑃!+𝑥 − 𝑠3,𝑓!(𝑠3)𝑑𝑠3

&4
'4 5𝑑𝑥&4

2&
								(3) 625 

in which x is the potential flood height; 𝑒(𝑡) is the development projection (future exposure divided 626 
by the initial exposure of the city); 𝑑(𝑥)	is the damage estimation for the protected urban area 627 
under a given flood height 𝑥	(based on the local building distribution and fragility and digital 628 
elevation model); 𝑃! is the CDF of projected annual storm tide distribution; and 𝑓!(𝑠3) is the 629 
distribution of SLR at year y. Here the convolution of storm tide and SLR distributions is applied to 630 
calculate the flood height distribution (68). 631 
 632 
Under these settings, we build the framework for DP, BDP, DPS, and RL to solve the optimization 633 
problem of adaptive seawall height. 634 
 635 
Benchmark Algorithm: Dynamic Programming 636 
The DP method performs the optimization for the objective function (Eq. 1) with projected future 637 
SLR and storm tide distributions. Because the seawall built before one specific time point will not 638 
affect future action while the possible future action may affect the decision on current seawall 639 
height, the problem can be solved backwardly (11). This method successfully converts a multi-640 
dimensional sequential decision-making problem into numerous decoupled one-dimensional 641 
problems, and a one-dimensional search strategy can be used to solve each of the one-642 
dimensional problems. 643 
 644 
Specifically, for each time period (i.e., for each one-dimensional problem), we calculate the best 645 
action (𝐴!; assuming 𝐴!'" = 0) and lowest value (𝑉!) such that 646 

𝐴! = 𝑎𝑟𝑔𝑚𝑖𝑛2& Q+𝐷(𝐴! , 𝑠!+&,, 𝑝!+&,) + 𝐶(𝐴! , 𝐴!'"),𝑒'((!+&,) + 𝑉!&"(𝐴!)𝑒'((!&")+
+

,-"

	(4)	647 

 648 
and 649 

𝑉!(𝐴!'") = 𝑚𝑖𝑛2& Q+𝐷(𝐴! , 𝑠!+&,, 𝑝!+&,) + 𝐶(𝐴! , 𝐴!'"),𝑒'((!+&,) + 𝑉!&"(𝐴!)𝑒'((!&")+
+

,-"

(5) 650 

where 𝑉! is the expected total damage and construction cost from time t to the end of the 651 
planning horizon under the optimal strategy for the given climate projection.  652 
 653 
Benchmark Algorithm: Bayesian Dynamic Programming 654 

The BDP approach follows ref. 15. Whenever we observe a sea level at a specific time 𝑦#, we 655 
update our projection of SLR. Moreover, based on the updated information, DP analysis is 656 
applied to the time window from time 𝑦# to the end of the life cycle.   657 
To illustrate the effect of information updates, we apply the conditional probability of future SLR 658 
given current conditions. Accordingly, the damage function	𝐷+𝐴! , 𝑠3, 𝑝3, is changed to a 659 
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conditional form. Assuming we have observed the sea level time series 𝑠":3' before year 𝑦#, for 660 
any year 𝑦 later than 𝑦#, we update Eq. (3) to  661 
𝐷+𝐴! , 𝑠3|𝑠":3' , 𝑝3, = ∫ 𝑒(𝑡)𝑑(𝑥).∫ 𝑃!+𝑥 − 𝑠3,𝑓+𝑠3V𝑠":3',𝑑𝑠3

&4
'4 5𝑑𝑥&4

2&
                       (6) 662 

Here we use a neighborhood-based sampling algorithm (Ruiz and Lorenzo 2002) to estimate the 663 
conditional density function of future SLR (𝑓+𝑠3V𝑠":3',) given observed sea level time series 𝑠":3'.  664 
The seawall decision is updated by simple adjustment of Eq.4: 665 

𝐴! = 𝑎𝑟𝑔𝑚𝑖𝑛2& Q+𝐷(𝐴! , 𝑠!+&,|𝑠":! , 𝑝!+&,) + 𝐶(𝐴! , 𝐴!'"),𝑒'((!+&,) + 𝑉!&"(𝐴!)𝑒'((!&")+
+

,-"

	(7)	666 

 667 
Benchmark Algorithm: Direct Policy Search 668 
The DPS approach is adopted from ref. 18. Whenever we observe a sea level (𝑠!) at a specific 669 
time 𝑡, we update the seawall height with the following equation: 670 
 𝐴! = 𝛽# + 𝛽" ⋅ 𝑡 + 𝛽6 ⋅ 𝑠! + 𝛽7 ⋅ 𝑡6 + 𝛽8 ⋅ 𝑠!6 + 𝛽9 ⋅ 𝑠! ⋅ 𝑡	(8)	 671 
where 𝛽* are parameters that determine our decision. The optimal parameters are determined by 672 
simulations for each climate scenario. For a given set of parameters, the expected total loss is 673 
calculated by Eq. 1. Then, we enumerate over potential sets of 𝛽*, until the expected total loss 674 
comes to a local minimum. 675 
 676 
Proposed Algorithm: Reinforcement Learning 677 

The RL framework considers potential future observations and updates, by changing Eq. 7 to 678 

𝐴!(𝑠":!) = 𝑎𝑟𝑔𝑚𝑖𝑛2& Q+𝐷(𝐴! , 𝑠!+&,|𝑠":! , 𝑝!+&,) + 𝐶(𝐴! , 𝐴!'"),𝑒'((!+&,)
+

,-"

679 

+ 𝔼𝑉!&"+𝐴!(𝑠":!),𝑒'((!&")+(9) 680 
where the last term is the expectation of total damage and construction cost from time t to the end 681 
of the planning horizon under future strategy updates in response to possible future climate 682 
conditions, and it can be written as: 683 

𝔼𝑉!&"+𝐴!(𝑠":!), = ] 𝑉!&"(𝐴!&"(𝑠":! , 𝑠!&"), 𝐴!)𝑓(𝑠!&"|𝑠":!)𝑑𝑠!&"
&4

'4
(10) 684 

By definition (Eq. 5), we could also rewrite Eq. 10 as: 685 
 𝔼𝑉!&"+𝐴!(𝑠":! , 𝑠!&"), = 	∫ +∑ +𝐷(𝐴! , 𝑠!&", 𝑝!+&,) + 𝐶(𝐴! , 𝐴!'"),𝑒'((!+&,) ++

,-"
&4
'4686 

𝔼𝑉!&6(𝐴!&"(𝑠":!&"))𝑒'((!&")+,𝑓(𝑠!&"|𝑠":!)𝑑𝑠!&"                                               (11) 687 
The expected reward at the current step depends only on the next step’s estimation of the value 688 
function (i.e., reward approximation). 689 
 690 
The complexity of designing RL algorithms is much larger than BDP since to obtain the current 691 
optimal seawall height, one needs to enumerate all the potential future SLR realizations. First, an 692 
unbiased design requires a large number of SLR scenarios (e.g., ~over 80,000 scenarios used in 693 
this study to sufficiently cover the large uncertainty space). (The traditional decision trees-driven 694 
framework, considering 10 time steps, would lead to a total of 80,000 to the power of 10 branches 695 
of decision trees.) The second challenge comes from estimating the reward (life-cycle benefit 696 
minus cost) of each policy decision, where the computational burden grows exponentially as the 697 
time resolution of the decision-making process becomes finer (e.g., computational time increases 698 
by 30 times if the analysis time resolution changes from every 20 years to every 10 years). In a 699 
conventional decision tree framework, it is necessary to compute all decisions and cumulative 700 
costs for every time step within each scenario. As the time resolution of the SLR process 701 
becomes finer, an exponentially growing computational burden results.  702 
 703 
Here we apply backward approximate dynamic programming (BADP), a typical RL algorithm, to 704 
overcome the computational challenges. To implement BADP, we first simulate a large number of 705 
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sea level realizations (~ 80,000). The main target of BADP is to design a look-up table, which is 706 
the 𝐴!(𝑠":!) for all the realizations simulated, to tell the policymaker what to do when they observe 707 
new information. For every possible observation of SLR, there is an optimal action given in the 708 
table produced by BADP. Note that for the final year, the seawall height could easily be 709 
determined by historical sea level records as there would be no future update. Thus, for each sea 710 
level realization group (80,000 groups; state approximation) over the time horizon, 𝑠":. (where k is 711 
the final decision time point) we can determine the final stage seawall height based on the update 712 
distribution of SLR from time point k to k+1 and record that in the look-up table. Then we could 713 
use Eq. 8 to find the optimal seawall height 𝐴.'" for each period, 1:k-1, backwardly, based on the 714 
updated distribution of SLR for each time period. By solving the problem backward and applying 715 
the reward approximation method under the Bellman optimality condition (allowing condensing 716 
the state tree into a single step), the optimal seawall height at any given time step could be 717 
obtained. The memory needed to store all the potential solutions under real SLR possibilities can 718 
be infinite since the SLR possibilities grow exponentially as time goes on. Here, we approximate 719 
the look-up table by restricting it to the realizations (~80,000) we simulated.  720 
 721 
The computational cost of RL is higher than for the other methods. It takes approximately 20 722 
minutes to run the RL algorithm for a single region under one climate scenario, whereas BDP and 723 
DPS methods take only a few minutes, and DP takes several seconds. Furthermore, the 724 
complexity of the current solutions generated by the RL framework poses challenges for 725 
interpretation by policymakers because it produces an extensive array of rule sets. Future 726 
research aims to address these issues by implementing information distillation to substantially 727 
reduce the number of rules and improve the computational efficiency of the RL framework. 728 
 729 
Total Loss under Case II 730 

Under Case II, the objective can be separated into four parts: expected damage, the dike 731 
construction cost, relocation cost in the retreat zone and retrofit cost in the accommodation zone. 732 
The total loss could be written as: 733 
𝐿+𝐴!, = ∫ .𝐷+𝐴, 𝑠! , 𝑝! , 𝑤__⃗ , 𝑟𝑠___⃗ , + 𝐶+𝐴, + 𝐶:(𝑤__⃗ ) + 𝐶(;(𝑟𝑠___⃗ )5𝑒'(!

)
# ≈734 

∑ ∑ [𝐷(𝐴* , 𝑠*+&,, 𝑝*+&,, 𝑤! , 𝑟𝑠!) + 𝐶(𝐴* , 𝐴*'", 𝑚) + 𝐶:(𝑤* , 𝑤*'", 𝑚) ++
,-"

.
*-"735 

𝐶(;(𝑟𝑠* , 𝑟𝑠*'", 𝑚)]𝑒'((*+&,)                                                                                                      (12) 736 
 737 
Here 𝑤__⃗  and  𝑟𝑠___⃗  are the time-changing boundaries where the local planner is implementing buyout 738 
and retrofit policy, respectively. The cost to implement retreat (withdrawal; 𝐶:) / acommodation 739 
(resistance; 𝐶(;) zone policy is determined by the retreat/accommodation zone difference 740 
between timesteps.  741 

𝐶:(𝑤* , 𝑤*'", 𝑚) = 	B
∫ 𝑉𝑇(ℎ)𝑑ℎ:#
:#$%

, 𝑖𝑓	𝑚 = 1
0, 𝑒𝑙𝑠𝑒

                                                                            (13) 742 

 743 
where 𝑉𝑇(ℎ) is the total value of properties at a given height h. The planner may buy out all the 744 
properties within the newly proposed retreat zone. 745 

𝐶(;(𝑟𝑠* , 𝑟𝑠*'", 𝑚) = 	B
∫ 𝑠∗ ⋅ 𝑉𝑇(ℎ)𝑑ℎ(;#
(;#$%

, 𝑖𝑓	𝑚 = 1
0, 𝑒𝑙𝑠𝑒

(14) 746 

 747 
where 𝑠∗ is the factor of average retrofit cost for the properties inside the resistance zone 748 
compared to the total value, and the planner (or property owners) may retrofit all the properties 749 
within the newly proposed retrofit zone. For those properties that could be elevated, we assume 750 
them to be elevated following the FEMA criteria (54). For those that could not be elevated, we 751 
also follow ref. 54 to consider upgrading waterproof layers for the basement and ground floor in 752 
these properties. 753 
 754 
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To construct the RL algorithm, we could separately solve the optimization problem for each of the 755 
three zones: retreat zone, accommodation zone, and dike-protected zone. The damage inside 756 
each zone is fully decoupled; thus, the strategy implemented in a zone will not impact other zones 757 
once the height of the withdrawal boundary (wb) and the height of the dike foundation (df) are 758 
determined. As a result, we could implement a similar RL framework to the optimization problem 759 
in each zone to obtain the optimal policy implementation area 𝑤__⃗  and  𝑟𝑠___⃗  as in the one-760 
dimensional case.  761 
 762 
For example, the governing equation for the withdrawal boundary is 763 

𝑤!(𝑠":!) = 𝑎𝑟𝑔𝑚𝑖𝑛:& Q+𝐷(𝑤! , 𝑠!+&,|𝑠":! , 𝑝!+&,) + 𝐶:(𝑤! , 𝑤!'"),𝑒'((!+&,)
+

,-"

764 

+ 𝔼𝑉!&"+𝑤!(𝑠":! , 𝑠!&"),𝑒'((!&")+ 	(15) 765 
 766 
and the reward function V is similar to that in Eq. (5) except being extended to include the cost for 767 
implementing withdrawal and buyout decisions. 768 
We enumerate the potential height of the withdrawal boundary (wb) and dike foundation (df) to 769 
find the strategies that make the flood management project reach the global optimal.  770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
Data Availability 779 

All codes and data (excluding initial data for building properties with individual building names) 780 
will be released upon publication at Zenodo.  781 
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 1001 
Figure 1. Study Area in NYC. a) The “BIG U” protected region in Lower Manhattan. b) 1002 
Illustrative distribution on Digital Elevation Map (DEM) of the 1003 
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withdrawal/accommodation/dike-protected zones, shown as an example for the area marked 1004 
with a red rectangular in panel (a). The retreat zone (purple) is lower in altitude than the 1005 
accommodation zone (blue). The dike protects regions beyond the accommodation zone 1006 
(orange). 1007 
 1008 
 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

Figure 2. Analysis of seawall height strategies suggested by different models (left panel) and 1015 
SLR projection (middle panel) and storm tide projection (right panel) under a) SSP2 4.5 and 1016 
b) SSP5 8.5. Green line shows the “Big U” level.  Black line shows the static-optimal level. In 1017 
the left panel, blue curve shows the dynamic optimal level. Red curve shows the medium 1018 
strategy by RL; the red shade shows the probability density function (PDF) of the seawall 1019 
height by RL, with a darker color corresponding to a higher probability. In middle panel, the 1020 
center curve shows the median and the shade shows the PDF of SLR projection. In right 1021 
panel, the storm tide return level is shown for each decade.  1022 
 1023 
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 1024 
Figure 3. Sample paths of seawall height under different SLR realizations under SSP5 8.5. The 1025 
first column shows selected SLR realization (black) over the background SLR distribution (red). 1026 
The middle column shows the 2100 SLR prediction conditioned on the SLR realization over the 1027 
21st century (5%-95% confidence interval). The third column shows the seawall height time 1028 
series planned at different time points, where different colors indicate the different time points: 1029 
blue for the decision made at the beginning of the 21st century, and yellow for the decision made 1030 
close to the end of the 21st century (similar to the middle column). 1031 
  1032 
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 1033 

 1034 
Figure 4. The composition of total cost under the multidimensional flood risk mitigation strategies 1035 
given different ground elevations of dike under a) SSP2 4.5 and b) SSP5 8.5 1036 
 1037 
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 1039 

Figure 5. Analysis of retreat/accommodation zone and dike coverage by RL (left panel) for a) 1040 
SSP2 4.5 and b) SSP5 8.5, under the projected SLR (right panel). Magenta curve shows the 1041 
medium of the retreat zone boundary. Blue curve shows the medium of the accommodation zone 1042 
boundary. Red curve shows the medium dike height. The shade in the left panel shows PDF, 1043 
indicating the probability of certain retreat/accommodation zone boundary or dike height, with a 1044 
darker color corresponding to a higher probability. The shade in the right panel shows PDF of 1045 
SLR projection.  1046 
 1047 
  1048 
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 1049 

Figure 6. Sample paths of retreat zone boundary, accommodation zone boundary and dike 1050 
height under different SLR realizations under SSP5 8.5 (same paths as discussed in Figure. 3). 1051 
The first column shows selected SLR realization (black) over the background SLR distribution 1052 
(red). The middle column shows the 2100 SLR prediction conditioned on the SLR realization over 1053 
the 21st century (5%-95% confidence interval). The third column shows the seawall height time 1054 
series planned at different time points, where different colors indicate the different time points: 1055 
blue for the decision made at the beginning of the 21st century, and yellow for the decision made 1056 
close to the end of the 21st century (similar to the middle column). 1057 
  1058 
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 1059 

 1060 

 1061 
Figure 7. Quantile of total cost under different strategies under a) SSP2 4.5 and b) SSP5 8.5. 1062 
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Table 1. Different Policy Design Frameworks, including design based on return period of the 1066 
hazard and cost-benefit optimal statistic and dynamic strategies. The frameworks considered in 1067 
this study are bolded.  1068 
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Table 2. Expected loss, policy expenditure, and bias loss under different scenarios and different 1072 
optimization frameworks (billion USD). Four scenarios are included: projected/assumed to be 1073 
SSP5 8.5 LC or SSP2 4.5 MC with reality of SSP5 8.5 LC or SSP2 4.5 MC. In comparison to the 1074 
Big U strategy, six optimization frameworks are considered: static optimal (SO), dynamic 1075 
programming (DP), Bayesian dynamic programming (BDP), direct policy search (DPS), 1076 
reinforcement learning (RL), and RL for multiple strategies (MS). 1077 
 1078 

 1079 


