References
Albaugh, T. J., Fox, T. R., Maier, C. A., Campoe, O. C., Rubilar, R. A.,
Cook, R. L., Raymond, J. E., Alvares, C. A., Stape, J. L. (2018). A
common garden experiment examining light use efficiency and heat sum to
explain growth differences in native and exotic Pinus taeda .Forest Ecology and Management , 425 , 35-44.https://doi.org/10.1016/j.foreco.2018.05.033
Andrés, F., & Coupland, G. (2012). The genetic basis of flowering
responses to seasonal cues. Nature Review Genetics , 13 (9),
627-639.https://doi.org/10.1038/nrg3291
Ashworth, M. B., Walsh, M. J., Flower, K. C., Vila-Aiub, M. M., &
Powles, S. B. (2016). Directional selection for flowering time leads to
adaptive evolution in Raphanus raphanistrum (Wild radish).Evolutionary Applications , 9 (4), 619-629.https://doi.org/10.1111/eva.12350
Baucom, R. S. (2019). Evolutionary and ecological insights from
herbicide-resistant weeds: what have we learned about plant adaptation,
and what is left to uncover? New Phytologist , 223 (1),
68-82.https://doi.org/10.1111/nph.15723
Blalock, H.M. (1972) Social statistics . New York: McGraw-Hill.
Capovilla, G., Schmid, M., & Pose, D. (2015). Control of flowering by
ambient temperature. Journal of Experimental Botany ,66 (1), 59-69.https://doi.org/10.1093/jxb/eru416
Cabej, N. R. (2019). Epigenetics of Sympatric
Speciation—Speciation as a Mechanism of Evolution . In Epigenetic
Principles of Evolution (pp. 563-646). USA: Academic Press.https://doi.org/10.1016/B978-0-12-814067-3.00013-2
de Villemereuil, P., Gaggiotti, O. E., Mouterde, M., & Till-Bottraud,
I. (2016). Common garden experiments in the genomic era: new
perspectives and opportunities. Heredity , 116 (3), 249-254.https://doi.org/10.1038/hdy.2015.93
de Villemereuil, P., Gaggiotti, O. E., Goudet, J., & Schwinning, S.
(2020). Common garden experiments to study local adaptation need to
account for population structure. Journal of Ecology .https://doi.org/10.1111/1365-2745.13528
Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013).
Genotype-by-environment interaction and plasticity: exploring genomic
responses of plants to the abiotic environment. Annual Review of
Ecology, Evolution, and Systematics , 44 (1), 5-29.https://doi.org/10.1146/annurev-ecolsys-110512-135806
Ding, Y., Shi, Y., & Yang, S. (2020). Molecular regulation of plant
responses to environmental temperatures. Molecular Plant ,13 (4), 544-564.https://doi.org/10.1016/j.molp.2020.02.004
do Amaral, M. N., Arge, L. W., Benitez, L. C., Danielowski, R.,
Silveira, S. F., Farias Dda, R., … Braga, E. J. (2016).
Comparative transcriptomics of rice plants under cold, iron, and salt
stresses. Functional & Integrative Genomics , 16 (5),
567-579.
Franklin, K. A. (2009). Light and temperature signal crosstalk in plant
development. Current Opinion in Plant Biology , 12 (1),
63-68.https://doi.org/10.1007/s10142-016-0507-y
Groot, M. P., Wagemaker, N., Ouborg, N. J., Verhoeven, K. J. F., &
Vergeer, P. (2018). Epigenetic population differentiation in field- and
common garden-grown Scabiosa columbaria plants. Ecology and
Evolution , 8 (6), 3505-3517.https://doi.org/10.1002/ece3.3931
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: effect
on plant growth and development. Weather and Climate Extremes ,10 , 4-10.https://doi.org/10.1016/j.wace.2015.08.001
Hereford, J. (2009). A quantitative survey of local adaptation and
fitness trade-offs. American Naturalist , 173 (5), 579-588.https://doi.org/10.1086/597611
Hussain, S., Khaliq, A., Ali B., Hussain, H. A., Qadir, T., & Hussain,
S. (2019). Temperature extremes: impact on rice growth and
development . In Plant Abiotic Stress Tolerance (pp. 153-172).
Switzerland: Springer.
Jackson, S. D. (2009). Plant responses to photoperiod. New
Phytologist , 181 (3), 517-531.https://doi.org/10.1111/j.1469-8137.2008.02681.x
Kim, D. H., & Sung, S. (2014). Genetic and epigenetic mechanisms
underlying vernalization. Arabidopsis Book , 12 , e0171.https://doi.org/10.1199/tab.0171
Kim, J., Shon, J., Lee, C. K., Yang, W., Yoon, Y., Yang, W. H., Kim, Y.
G., Lee, B.W. (2011). Relationship between grain filling duration and
leaf senescence of temperate rice under high temperature. Field
Crops Research , 122 (3), 207-213.https://doi.org/10.1016/j.fcr.2011.03.014
Kong, H., Wang, Z., Guo, J. Y., Xia, Q. Y., Zhao, H., Zhang, Y. L., Guo,
A. P., Lu, B. R. (2021). Increases in genetic diversity of WR associated
with ambient temperatures and limited gene flow. Biology ,10 (2), 71.https://doi.org/10.3390/biology10020071
Körner, C. (2006). Significance of temperature in plant life . In
Plant growth and climate change (pp. 48-66). UK: Blackwell Publishing
Ltd.
Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011).
High-temperature effects on rice growth, yield, and grain quality.Advances in Agronomy , 111 :87-206.https://doi.org/10.1016/B978-0-12-387689-8.00004-7
Kubota, A., Kita, S., Ishizaki, K., Nishihama, R., Yamato, K. T., &
Kohchi, T. (2014). Co-option of a photoperiodic growth-phase transition
system during land plant evolution. Nature Communication ,5 , 3668.https://doi.org/10.1038/ncomms4668
Mcneilly, T., & Antonovics, J. (1968). Evolution in closely adjacent
plant populations iv. barriers to gene flow. Heredity ,23 (2), 205-218.https://doi.org/10.1038/hdy.1968.29
Mahaut, L., Cheptou, P. O., Fried, G., Munoz, F., Storkey, J., Vasseur,
F., Violle, C., Bretagnolle, F. (2020). Weeds: against the rules?Trends in Plant Science , 25 (11), 1107-1116.
Nosil, P., Harmon, L. J., & Seehausen, O. (2009). Ecological
explanations for (incomplete) speciation. Trends in Ecology &
Evolution , 24 (3), 145-156.https://doi.org/10.1016/j.tplants.2020.05.013
Osborne, O. G., Kafle, T., Brewer, T., Dobreva, M. P., Hutton, I., &
Savolainen, V. (2020). Sympatric speciation in mountain roses
(Metrosideros ) on an oceanic island. Philosophical
transactions Royal Society Biological sciences , 375(1806), 20190542.https://doi.org/10.1098/rstb.2019.0542
Penfield, S. (2008). Temperature perception and signal transduction in
plants. New Phytologist , 179 (3), 615-628.https://doi.org/10.1111/j.1469-8137.2008.02478.x
Peters, K., Breitsameter, L., & Gerowitt, B. (2014). Impact of climate
change on weeds in agriculture: a review. Agronomy for Sustainable
Development , 34 (4), 707-721.https://doi.org/10.1007/s13593-014-0245-2
Rahul, S., Bhadru, D. N., Sreedhar, M., & Vanisri, S. (2017). Screening
of cold tolerant rice genotypes for seedling traits under low
temperature regimes. International Journal of Current Microbiology
and Applied Sciences , 6 (12), 4074-4081.https://doi.org/10.20546/ijcmas.2017.612.468
Savolainen, V., Anstett, M. C., Lexer, C., Hutton, I., Clarkson, J. J.,
Norup, M. V., Powell, M. P., Springate, D., Salamin, N., Baker, W. J.
(2006). Sympatric speciation in palms on an oceanic island.Nature , 441 (7090), 210-213.https://doi.org/10.1038/nature04566
Sharifi, P. (2010). Evaluation on sixty-eight rice germplasms in cold
tolerance at germination stage. Rice Science , 17 (1),
77-81.https://doi.org/10.1016/S1672-6308(08)60107-9
Song, Y., Gao, Z., & Luan, W. (2012). Interaction between temperature
and photoperiod in regulation of flowering time in rice. Science
China Life Sciences , 55 (3), 241-249.https://doi.org/10.1007/s11427-012-4300-4
van Boheemen, L. A., Atwater, D. Z., & Hodgins, K. A. (2019). Rapid and
repeated local adaptation to climate in an invasive plant. New
Phytologist , 222 (1), 614-627.https://doi.org/10.1111/nph.15564
Vigueira, C. C., Olsen, K. M., & Caicedo, A. L. (2013). The red queen
in the corn: agricultural weeds as models of rapid adaptive evolution.Heredity , 110 (4), 303-311.https://doi.org/10.1038/hdy.2012.104
Waser, N. M., & Campbell, D. R. (2004). Ecological Speciation in
Flowering Plants. In Adaptive Speciation (pp. 264–277). UK: Cambridge
University Press.
Wei, H., Wang, X., Xu, H., & Wang, L. (2020). Molecular basis of
heading date control in rice. aBIOTECH , 1 (4), 219-232.https://doi.org/10.1007/s42994-020-00019-w
Xia, H. B., Xia, H., Ellstrand, N. C., Yang, C., & Lu, B. R. (2011).
Rapid evolutionary divergence and ecotypic diversification of
germination behavior in WR populations. New Phytologist ,191 (4), 1119-1127.https://doi.org/10.1111/j.1469-8137.2011.03766.x