References:
Basile-Doelsch, I., Balesdent, J. & Pellerin, S. (2020). Reviews and
syntheses: The mechanisms underlying carbon storage in soil.Biogeosciences , 17, 5223-5242.
Berendse, F. & Aerts, R. (1987). Nitrogen-use-efficiency: a
biologically meaningful definition? Functional Ecology , 1,
293-296.
Bloom, A.A., Exbrayat, J.-F., van der Velde, I.R., Feng, L. & Williams,
M. (2016). The decadal state of the terrestrial carbon cycle: Global
retrievals of terrestrial carbon allocation, pools, and residence times.Proceedings of the National Academy of Sciences of the United
States of America , 113, 1285-1290.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M.,
Migliavacca, M. et al. (2014). Global covariation of carbon
turnover times with climate in terrestrial ecosystems. Nature ,
514, 213-217.
Chen, L., Fang, K., Wei, B., Qin, S., Feng, X., Hu, T. et al.(2021). Soil carbon persistence governed by plant input and mineral
protection at regional and global scales. Ecology Letters .
Chen, S., Zou, J., Hu, Z. & Lu, Y. (2020). Temporal and spatial
variations in the mean residence time of soil organic carbon and their
relationship with climatic, soil and vegetation drivers. Global
and Planetary Change , 195.
Conant, R.T., Ryan, M.G., Ågren, G.I., Birge, H.E., Davidson, E.A.,
Eliasson, P.E. et al. (2011). Temperature and soil organic matter
decomposition rates - synthesis of current knowledge and a way forward.Global Change Biology , 17, 3392-3404.
Davies, R.B. (1987). Hypothesis Testing when a Nuisance Parameter is
Present Only Under the Alternatives. Biometrika .
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova
Pinto, M. et al. (2015). Soil carbon storage controlled by
interactions between geochemistry and climate. Nat. Geosci. , 8,
780-783.
Exbrayat, J.F., Pitman, A.J., Zhang, Q., Abramowitz, G. & Wang, Y.P.
(2013). Examining soil carbon uncertainty in a global model: response of
microbial decomposition to temperature, moisture and nutrient
limitation. Biogeosciences , 10, 7095-7108.
Fan, N., Koirala, S., Reichstein, M., Thurner, M., Avitabile, V.,
Santoro, M. et al. (2020). Apparent ecosystem carbon turnover
time: uncertainties and robust features. Earth Syst. Sci. Data ,
12, 2517-2536.
Fang, J., Shen, Z., Tang, Z., Wang, X., Wang, Z., Feng, J. et al.(2012). Forest community survey and the structural characteristics of
forests in China. Ecography , 35, 1059-1071.
Friend, A.D., Lucht, W., Rademacher, T.T., Keribin, R., Betts, R.,
Cadule, P. et al. (2014). Carbon residence time dominates
uncertainty in terrestrial vegetation responses to future climate and
atmospheric CO2. Proc Natl Acad Sci U S A , 111, 3280-3285.
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A.J.
(2014). Global chemical weathering and associated P-release - The role
of lithology, temperature and soil properties. Chemical Geology ,
363, 145-163.
He, X., Augusto, L., Goll, D.S., Ringeval, B., Wang, Y., Helfenstein, J.et al. (2021). Global patterns and drivers of soil total
phosphorus concentration. Earth Syst. Sci. Data Discuss. , 2021,
1-21.
He, Y., Trumbore, S.E., Torn, M.S., Harden, J.W., Vaughn, L.J.S.,
Allison, S.D. et al. (2016). Radiocarbon constraints imply
reduced carbon uptake by soils during the 21st century. Science ,
353, 1419-1424.
Helfenstein, J., Pistocchi, C., Oberson, A., Tamburini, F., Goll, D.S.
& Frossard, E. (2020). Estimates of mean residence times of phosphorus
in commonly considered inorganic soil phosphorus pools.Biogeosciences , 17, 441-454.
Hemingway, J.D., Rothman, D.H., Grant, K.E., Rosengard, S.Z., Eglinton,
T.I., Derry, L.A. et al. (2019). Mineral protection regulates
long-term global preservation of natural organic carbon. Nature ,
570, 228-+.
Jari Oksanen, F.G.B., Michael Friendly, Roeland Kindt,, Pierre Legendre,
D.M., Peter R. Minchin, R. B. O’Hara,, Gavin L. Simpson, P.S., M. Henry
H. Stevens, Eduard Szoecs, & Wagner, H. (2020). vegan: Community
Ecology Package. Available at:https://cran.r-project.org/web/packages/vegan.
Kindler, R., Siemens, J., Kaiser, K., Walmsley, D.C., Bernhofer, C.,
Buchmann, N. et al. (2011). Dissolved carbon leaching from soil
is a crucial component of the net ecosystem carbon balance. Global
Change Biology , 17, 1167-1185.
Koven, C.D., Hugelius, G., Lawrence, D.M. & Wieder, W.R. (2017). Higher
climatological temperature sensitivity of soil carbon in cold than warm
climates. Nature Climate Change , 7, 817-+.
Kramer, M.G. & Chadwick, O.A. (2018). Climate-driven thresholds in
reactive mineral retention of soil carbon at the global scale.Nature Climate Change , 8, 1104-+.
Lambers, H., Cawthray, G.R., Giavalisco, P., Kuo, J., Laliberte, E.,
Pearse, S.J. et al. (2012). Proteaceae from severely
phosphorus-impoverished soils extensively replace phospholipids with
galactolipids and sulfolipids during leaf development to achieve a high
photosynthetic phosphorus-use-efficiency. New Phytologist , 196,
1098-1108.
Larsen, K.S., Andresen, L.C., Beier, C., Jonasson, S., Albert, K.R.,
Ambus, P. et al. (2011). Reduced N cycling in response to
elevated CO2, warming, and drought in a Danish heathland: Synthesizing
results of the CLIMAITE project after two years of treatments.Global Change Biology , 17, 1884-1899.
Leiros, M.C., Trasar-Cepeda, C., Seoane, S. & Gil-Sotres, F. (1999).
Dependence of mineralization of soil organic matter on temperature and
moisture. Soil Biology & Biochemistry , 31, 327-335.
Liu, J., Fang, X., Tang, X., Wang, W., Zhou, G., Xu, S. et al.(2019). Patterns and controlling factors of plant nitrogen and
phosphorus stoichiometry across China’s forests. Biogeochemistry ,
143, 191-205.
Lu, X., Wang, Y.-P., Luo, Y. & Jiang, L. (2018). Ecosystem carbon
transit versus turnover times in response to climate warming and rising
atmospheric CO2 concentration. Biogeosciences , 15, 6559-6572.
Luo, Y., Shi, Z., Lu, X., Xia, J., Liang, J., Jiang, J. et al.(2017). Transient dynamics of terrestrial carbon storage: mathematical
foundation and its applications. Biogeosciences , 14, 145-161.
Mo, Q., Li, Z.a., Sayer, E.J., Lambers, H., Li, Y., Zou, B. et
al. (2019). Foliar phosphorus fractions reveal how tropical plants
maintain photosynthetic rates despite low soil phosphorus availability.Functional Ecology , 33, 503-513.
Muggeo, V.M.R. (2003). Estimating regression models with unknown
break-points. Statistics in Medicine , 22, 3055-3071.
Muggeo, V.M.R. (2021). segmented: Regression Models with Break-Points /
Change-Points Estimation. Available at:https://cran.r-project.org/web/packages/segmented/.
Peng, J., Wang, Y.-P., Houlton, B.Z., Dan, L., Pak, B. & Tang, X.
(2020). Global Carbon Sequestration Is Highly Sensitive to Model-Based
Formulations of Nitrogen Fixation. Global Biogeochemical Cycles ,
34.
Post, W.M., Emanuel, W.R., Zinke, P.J. & Stangenberger, A.G. (1982).
Soil carbon pools and world life zones. Nature , 298, 156-159.
Post, W.M., Pastor, J., Zinke, P.J. & Stangenberger, A.G. (1985).
Global patterns of nitrogen storage. Nature , 317, 613-616.
Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko,
A., Thies, C. et al. (2017). The last frontiers of wilderness:
Tracking loss of intact forest landscapes from 2000 to 2013.Science Advances , 3.
Rasmussen, C., Heckman, K., Wieder, W.R., Keiluweit, M., Lawrence, C.R.,
Berhe, A.A. et al. (2018). Beyond clay: towards an improved set
of variables for predicting soil organic matter content.Biogeochemistry , 137, 297-306.
S. Running, Q.M., M. Zhao (2015). MOD17A3H MODIS/Terra Net Primary
Production Yearly L4 Global 500m SIN Grid V006. NASA EOSDIS Land
Processes DAAC .
Sanderman, J., Hengl, T. & Fiske, G.J. (2017). Soil carbon debt of
12,000 years of human land use. Proceedings of the National
Academy of Sciences of the United States of America , 114, 9575-9580.
Shi, Z., Allison, S.D., He, Y.J., Levine, P.A., Hoyt, A.M., Beem-Miller,
J. et al. (2020). The age distribution of global soil carbon
inferred from radiocarbon measurements. Nat. Geosci. , 13, 555.
Sierra, C.A., Muller, M., Metzler, H., Manzoni, S. & Trumbore, S.E.
(2017). The muddle of ages, turnover, transit, and residence times in
the carbon cycle. Global Change Biology , 23, 1763-1773.
Six, J., Conant, R.T., Paul, E.A. & Paustian, K. (2002). Stabilization
mechanisms of soil organic matter: Implications for C-saturation of
soils. Plant and Soil , 241, 155-176.
Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y. et al.(2018). Carbon pools in China’s terrestrial ecosystems: New estimates
based on an intensive field survey. Proc Natl Acad Sci U S A ,
115, 4021-4026.
Tipping, E., Somerville, C.J. & Luster, J. (2016). The C:N:P:S
stoichiometry of soil organic matter. Biogeochemistry , 130,
117-131.
Turner, B.L. (2008). Resource partitioning for soil phosphorus: a
hypothesis. Journal of Ecology , 96, 698-702.
Turner, B.L., Brenes-Arguedas, T. & Condit, R. (2018). Pervasive
phosphorus limitation of tree species but not communities in tropical
forests. Nature , 555, 367-370.
Van der Waerden, B. (1952). Order tests for the two-sample problem and
their power. In: Indagationes Mathematicae (Proceedings) .
Elsevier, pp. 453-458.
Vitousek, P.M., Porder, S., Houlton, B.Z. & Chadwick, O.A. (2010).
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen-phosphorus interactions. Ecological Applications , 20,
5-15.
Walker, T.W. & Syers, J.K. (1976). Fate of phosphorus during
pedogenesis. Geoderma , 15, 1-19.
Wang, J., Sun, J., Xia, J., He, N., Li, M. & Niu, S. (2018a). Soil and
vegetation carbon turnover times from tropical to boreal forests.Functional Ecology , 32, 71-82.
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais,
P. et al. (2017). Global forest carbon uptake due to nitrogen and
phosphorus deposition from 1850 to 2100. Global Change Biology ,
23, 4854-4872.
Wang, Y.-P. & Goll, D.S. (2021). Modelling of land nutrient cycles:
recent progress and future development. Faculty reviews , 10,
53-53.
Wang, Y., Ciais, P., Goll, D., Huang, Y., Luo, Y., Wang, Y.-P. et
al. (2018b). GOLUM-CNP v1.0: a data-driven modeling of carbon, nitrogen
and phosphorus cycles in major terrestrial biomes. Geoscientific
Model Development , 11, 3903-3928.
Wang, Y.P., Houlton, B.Z. & Field, C.B. (2007). A model of
biogeochemical cycles of carbon, nitrogen, and phosphorus including
symbiotic nitrogen fixation and phosphatase production. Global
Biogeochemical Cycles , 21.
Wang, Y.P., Law, R.M. & Pak, B. (2010). A global model of carbon,
nitrogen and phosphorus cycles for the terrestrial biosphere.Biogeosciences , 7, 2261-2282.
Williams, L.J. & Abdi, H. (2010). FisherΓÇÖs least significant
difference (LSD) test. Encyclopedia of research design , 218,
840-853.
Yu, M., Wang, Y., Jiang, J., Wang, C., Zhou, G. & Yan, J. (2019). Soil
Organic Carbon Stabilization in the Three Subtropical Forests:
Importance of Clay and Metal Oxides. Journal of Geophysical
Research-Biogeosciences , 124, 2976-2990.
Zhang, Y.W., Guo, Y., Tang, Z., Feng, Y., Zhu, X., Xu, W. et al.(2021). Patterns of nitrogen and phosphorus pools in terrestrial
ecosystems in China. Earth Syst. Sci. Data Discuss. , 2021, 1-34.