References
Anderson, D.R., Link, W.A., Johnson, D.H. & Burnham, K.P. (2001). Suggestions for presenting the results of data analyses. The Journal of Wildlife Management , 65, 373–378.
Archibald, A.T., Neu, J.L., Elshorbany, Y.F., Cooper, O.R., Young, P.J., Akiyoshi, H., et al. (2020). Tropospheric Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100. Elementa: Science of the Anthropocene , 8.
Avnery, S., Mauzerall, D.L., Liu, J. & Horowitz, L.W. (2011a). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment , 45, 2284–2296.
Avnery, S., Mauzerall, D.L., Liu, J. & Horowitz, L.W. (2011b). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment , 45, 2297–2309.
Bartomeus, I., Ascher, J.S., Gibbs, J., Danforth, B.N., Wagner, D.L., Hedtke, S.M., et al. (2013). Historical changes in northeastern US bee pollinators related to shared ecological traits. PNAS , 110, 4656–4660.
Bartoń, K. (2011). MuMIn: Multi-model inference .
Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., et al. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.Science , 313, 351–354.
Black, V.J., Stewart, C.A., Roberts, J.A. & Black, C.R. (2007). Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants). New Phytologist , 176, 150–163.
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M.D., Conte, Y.L., et al. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. Journal of Apicultural Research , 53, 205–214.
Carvalheiro, L.G., Biesmeijer, J.C., Franzén, M., Aguirre-Gutiérrez, J., Garibaldi, L.A., Helm, A., et al. (2020). Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography , 43, 209–221.
Connop, S., Hill, T., Steer, J. & Shaw, P. (2010). The role of dietary breadth in national bumblebee (Bombus) declines: Simple correlation?Biological Conservation , 143, 2739–2746.
Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., et al. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances , 5, eaax0121.
Damalas, C.A. (2009). Understanding benefits and risks of pesticide use.Scientific Research and Essays , 4, 945–949.
David, T.I., Storkey, J. & Stevens, C.J. (2019). Understanding how changing soil nitrogen affects plant–pollinator interactions.Arthropod-Plant Interactions , 13, 671–684.
Dötterl, S., Vater, M., Rupp, T. & Held, A. (2016). Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees. J Chem Ecol , 42, 486–489.
Dudley, N. & Stolton, S. (2021). Air pollution and biodiversity: a review.
Duque, L., Poelman, E.H. & Steffan-Dewenter, I. (2020). Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. Environmental Pollution , 115953.
Ekroos, J., Kleijn, D., Batáry, P., Albrecht, M., Báldi, A., Blüthgen, N., et al. (2020). High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation , 241, 108255.
Emberson, L. (2020). Effects of ozone on agriculture, forests and grasslands. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 378, 20190327.
EPPO. (2010). Environmental risk assessment scheme for plant protection products. EPPO Bulletin , 40, 323–331.
European Environment Agency (EEA). (2020). Nitrogen surplus and exceedances of critical nitrogen inputs to agricultural land in view of adverse impacts on water quality . European Environment Agency . Available at: https://www.eea.europa.eu/data-and-maps/figures/nitrogen-surplus-and-exceedances-of. Last accessed 16 June 2020.
Farré‐Armengol, G., Peñuelas, J., Li, T., Yli‐Pirilä, P., Filella, I., Llusia, J., et al. (2016). Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytologist , 209, 152–160.
Feder, W.A. & Sullivan, F. (1969). Ozone: Depression of Frond Multiplication and Floral Production in Duckweed. Science , 165, 1373–1374.
Flores-Moreno, H., Reich, P.B., Lind, E.M., Sullivan, L.L., Seabloom, E.W., Yahdjian, L., et al. (2016). Climate modifies response of non-native and native species richness to nutrient enrichment.Philosophical Transactions of the Royal Society B: Biological Sciences , 371, 20150273.
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S.,et al. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences , 368, 20130164.
Fuentes, J.D., Chamecki, M., Roulston, T., Chen, B. & Pratt, K.R. (2016). Air pollutants degrade floral scents and increase insect foraging times. Atmospheric Environment , 141, 361–374.
Fuhrer, J., Martin, M.V., Mills, G., Heald, C.L., Harmens, H., Hayes, F., et al. (2016). Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecology and Evolution , 6, 8785–8799.
Garibaldi, L.A., Bartomeus, I., Bommarco, R., Klein, A.M., Cunningham, S.A., Aizen, M.A., et al. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity.J Appl Ecol , 52, 1436–1444.
Garibaldi, L.A., Requier, F., Rollin, O. & Andersson, G.K.S. (2017). Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science .
Garibaldi, L.A., Steffan-Dewenter, I., Kremen, C., Morales, J.M., Bommarco, R., Cunningham, S.A., et al. (2011). Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters , 14, 1062–1072.
Garratt, M.P.D., Bishop, J., Degani, E., Potts, S.G., Shaw, R.F., Shi, A., et al. (2018). Insect pollination as an agronomic input: Strategies for oilseed rape production. Journal of Applied Ecology , 55, 2834–2842.
Garratt, M.P.D., Breeze, T.D., Boreux, V., Fountain, M.T., McKerchar, M., Webber, S.M., et al. (2016). Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity. PLOS ONE , 11, e0153889.
Garratt, M.P.D., Breeze, T.D., Jenner, N., Polce, C., Biesmeijer, J.C. & Potts, S.G. (2014a). Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems & Environment , 184, 34–40.
Garratt, M.P.D., Coston, D.J., Truslove, C.L., Lappage, M.G., Polce, C., Dean, R., et al. (2014b). The identity of crop pollinators helps target conservation for improved ecosystem services. Biological Conservation , 169, 128–135.
Garratt, M.P.D., Truslove, C.L., Coston, D.J., Evans, R.L., Moss, E.D., Dodson, C., et al. (2014c). Pollination deficits in UK apple orchards. Journal of Pollination Ecology , 12, 9–14.
Geslin, B., Gauzens, B., Baude, M., Dajoz, I., Fontaine, C., Henry, M.,et al. (2017). Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions, 56.
Gillespie, C., Stabler, D., Tallentire, E., Goumenaki, E. & Barnes, J. (2015). Exposure to environmentally-relevant levels of ozone negatively influence pollen and fruit development. Environmental Pollution , 206, 494–501.
González-Varo, J.P., Biesmeijer, J.C., Bommarco, R., Potts, S.G., Schweiger, O., Smith, H.G., et al. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology & Evolution , 28, 524–530.
Goulson, D., Lye, G.C. & Darvill, B. (2008). Decline and conservation of bumble bees. Annual Review of Entomology , 53, 191–208.
Guerreiro, C.B.B., Foltescu, V. & de Leeuw, F. (2014). Air quality status and trends in Europe. Atmospheric Environment , 98, 376–384.
Hayes, F., Williamson, J. & Mills, G. (2012). Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community. Environmental Pollution , 163, 40–47.
Heiden, A.C., Hoffmann, T., Kahl, J., Kley, D., Klockow, D., Langebartels, C., et al. (1999). Emission of Volatile Organic Compounds from Ozone-Exposed Plants. Ecological Applications , 9, 1160–1167.
Ilić, P. & Maksimović, T. (2021). Air Pollution and Biodiversity .
IPCC. (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press.
Jarvis, S.G., Henrys, P.A., Redheard, J.W., Osório, B.M. & Pywell, R.F. (2019). CEH Land Cover plus: Pesticides 2012-2016 (England and Wales).NERC Environmental Information Data Centre .
Johnson, B., Standish, R. & Hobbs, R. (2020). Non-native plants and nitrogen addition have little effect on pollination and seed set in 3-year-old restored woodland. Austral Ecology , 45, 1156–1168.
Jürgens, A. & Bischoff, M. (2017). Changing odour landscapes: the effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication. Functional Ecology , 31, 56–64.
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R., et al. (2013). A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems.Ecol Lett , 16, 584–599.
Kleijn, D. & Raemakers, I. (2008). A Retrospective Analysis of Pollen Host Plant Use by Stable and Declining Bumble Bee Species.Ecology , 89, 1811–1823.
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M., Isaacs, R., et al. (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun , 6.
Kremen, C. & M’Gonigle, L.K. (2015). EDITOR’S CHOICE: Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol , 52, 602–610.
Lefohn, A.S., Malley, C.S., Smith, L., Wells, B., Hazucha, M., Simon, H., et al. (2018). Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa (Wash D C) , 1, 1.
Leisner, C.P. & Ainsworth, E.A. (2012). Quantifying the effects of ozone on plant reproductive growth and development. Global Change Biology , 18, 606–616.
Lewis, K.A. & Tzilivakis, J. (2019). Wild Bee Toxicity Data for Pesticide Risk Assessments. Data , 4, 98.
Lewis, K.A., Tzilivakis, J., Warner, D.J. & Green, A. (2016). An international database for pesticide risk assessments and management.Human and Ecological Risk Assessment: An International Journal , 22, 1050–1064.
Lindström, S.A.M., Herbertsson, L., Rundlöf, M., Bommarco, R. & Smith, H.G. (2016). Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proceedings of the Royal Society B: Biological Sciences , 283, 20161641.
Lovett, G., Tear, T., Evers, D., Findlay, S., Cosby Jr, B., Dunscomb, J., et al. (2009). Effects of Air Pollution on Ecosystems and Biological Diversity in the Eastern United States. Annals of the New York Academy of Sciences , 1162, 99–135.
Mallinger, R.E., Gaines-Day, H.R. & Gratton, C. (2017). Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLOS ONE , 12, e0189268.
Mancini, F., Woodcock, B.A. & Isaac, N.J.B. (2019). Agrochemicals in the wild: Identifying links between pesticide use and declines of nontarget organisms. Current Opinion in Environmental Science & Health , Environmental Pollution: Wildlife, 11, 53–58.
Marini, L., Tamburini, G., Petrucco-Toffolo, E., Lindström, S.A.M., Zanetti, F., Mosca, G., et al. (2015). Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems & Environment , 207, 61–66.
Martay, B., Pearce-Higgins, J.W., Harris, S.J. & Gillings, S. (2018). Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain.Journal for Nature Conservation , 44, 33–42.
Mazor, T., Doropoulos, C., Schwarzmueller, F., Gladish, D.W., Kumaran, N., Merkel, K., et al. (2018). Global mismatch of policy and research on drivers of biodiversity loss. Nature Ecology & Evolution , 2, 1071–1074.
McFrederick, Q.S., Kathilankal, J.C. & Fuentes, J.D. (2008). Air pollution modifies floral scent trails. Atmospheric Environment , 42, 2336–2348.
Mills, G., Wagg, S. & Harmens, H. (2013). Ozone Pollution: Impacts on ecosystem services and biodiversity . Centre for Ecology and Hydrology, Gwynedd, UK.
NASA. (2020). Panoply v. 4.11.1 . NASA Goddard Institute for Space Studies, USA.
Osório, B.M., Redheard, J.W., Javis, S.G., May, L. & Pywell, R.F. (2019). CEH Land Cover plus: Fertilisers 2010-2015 (England). NERC Environmental Information Data Centre .
Paoletti, E., De Marco, A., Beddows, D.C.S., Harrison, R.M. & Manning, W.J. (2014). Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing.Environmental Pollution , 192, 295–299.
Paradis, E., Blomberg, S., Bolker [aut, B., cph, Brown, J., Claude, J., et al. (2019). ape: Analyses of Phylogenetics and Evolution .
Park, M.G., Blitzer, E.J., Gibbs, J., Losey, J.E. & Danforth, B.N. (2015). Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proceedings of the Royal Society B: Biological Sciences , 282, 20150299.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S. & Bert, V.W. (2020). nlme: Linear and Nonlinear Mixed Effects Models .
Pöyry, J., Carvalheiro, L.G., Heikkinen, R.K., Kühn, I., Kuussaari, M., Schweiger, O., et al. (2017). The effects of soil eutrophication propagate to higher trophic levels. Global Ecology and Biogeography , 26, 18–30.
Prado, A., Pioz, M., Vidau, C., Requier, F., Jury, M., Crauser, D.,et al. (2019). Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees. Science of The Total Environment , 650, 1250–1260.
QGIS Development Team. (2020). QGIS Geographic Information System . Open Source Geospatial Foundation.
R Development Core Team. (2018). R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL.
Ramos, D. de L., Bustamante, M.M.C., Silva, F.D. da S. e & Carvalheiro, L.G. (2018). Crop fertilization affects pollination service provision – Common bean as a case study. PLoS One , 13.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., et al. (2009). A safe operating space for humanity.Nature , 461, 472–475.
Rollin, O. & Garibaldi, L.A. (2019). Impacts of honeybee density on crop yield: A meta-analysis. Journal of Applied Ecology , 0.
Roth, T., Kohli, L., Bühler, C., Rihm, B., Meuli, R.G., Meier, R.,et al. (2019). Species turnover reveals hidden effects of decreasing nitrogen deposition in mountain hay meadows. PeerJ , 7, e6347.
Roth, T., Kohli, L., Rihm, B. & Achermann, B. (2013). Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agriculture, Ecosystems & Environment , 178, 121–126.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global biodiversity scenarios for the year 2100. Science , 287, 1770–1774.
Saunier, A. & Blande, J.D. (2019). The effect of elevated ozone on floral chemistry of Brassicaceae species. Environmental Pollution , 255, 113257.
Smil, V. (2000). PHOSPHORUS IN THE ENVIRONMENT: Natural Flows and Human Interferences. Annual Review of Energy and the Environment , 25, 53–88.
Stevens, C.J., David, T.I. & Storkey, J. (2018). Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology , 32, 1757–1769.
Tai, A.P.K., Martin, M.V. & Heald, C.L. (2014). Threat to future global food security from climate change and ozone air pollution. Nature Climate Change , 4, 817–821.
Taia, W., Basahi, J. & Hassan, I. (2013). Impact of ambient air on physiology, pollen tube growth, pollen germination and yield in pepper (Capsicum annuum L.). Pakistan Journal of Botany , 45, 921–926.
Tamburini, G., Berti, A., Morari, F. & Marini, L. (2016). Degradation of soil fertility can cancel pollination benefits in sunflower.Oecologia , 180, 581–587.
Tamburini, G., Lami, F. & Marini, L. (2017). Pollination benefits are maximized at intermediate nutrient levels. Proceedings of the Royal Society B: Biological Sciences , 284, 20170729.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. & Polasky, S. (2002). Agricultural sustainability and intensive production practices.Nature , 418, 671–677.
Tjoelker, M.G. & Luxmoore, R.J. (1991). Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. New Phytologist , 119, 69–81.
Tosi, S., Burgio, G. & Nieh, J.C. (2017). A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability.Scientific Reports , 7, 1201.
Van de Pol, M. & Wright, J. (2009). A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour , 77, 753–758.
Van Dingenen, R., Dentener, F.J., Raes, F., Krol, M.C., Emberson, L. & Cofala, J. (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation.Atmospheric Environment , 43, 604–618.
Vanderplanck, M., Lapeyre, B., Brondani, M., Opsommer, M., Dufay, M., Hossaert-McKey, M., et al. (2021). Ozone Pollution Alters Olfaction and Behavior of Pollinators. Antioxidants , 10, 636.
Walker, L. & Wu, S. (2017). Pollinators and Pesticides. In:International Farm Animal, Wildlife and Food Safety Law (eds. Steier, G. & Patel, K.K.). Springer International Publishing, Cham, pp. 495–513.
Wang, C. & Tang, Y. (2019). Responses of plant phenology to nitrogen addition: a meta-analysis. Oikos , 128, 1243–1253.
Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L. & Potts, S.G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation , 143, 2280–2291.
Wood, T.J., Michez, D., Paxton, R.J., Drossart, M., Neumann, P., Gérard, M., et al. (2020). Managed honey bees as a radar for wild bee decline? Apidologie .
Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., Redhead, J., et al. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science , 356, 1393–1395.
Yasrebi-de-Kom, I.A.R., Biesmeijer, J.C. & Aguirre‐Gutiérrez, J. (2019). Risk of potential pesticide use to honeybee and bumblebee survival and distribution: A country-wide analysis for The Netherlands.Diversity and Distributions , 25, 1709–1720.
Table 1. Sources of data for crop production and pollinator abundance included in the analyses. UK: United Kingdom; NL: Netherlands.