References:
1. Heinimann, A., Mertz, O., Frolking, S., Egelund Christensen, A., Hurni, K., Sedano, F., … & Hurtt, G. (2017). A global view of shifting cultivation: Recent, current, and future extent. PloS one12 (9), e0184479.
2. Thrupp, L. A., Hecht, S., Browder, J. O., Lynch, O. J., Megateli, N., & O’Brien, W. (1997). The diversity and dynamics of shifting cultivation: Myths, realities, and policy implications  (p. 1). Washington, DC: World Resources Institute.
3. Tomar, J. M. S., Anup, D., Lokho, P., Chaturvedi, O. P., & Munda, G. C. (2012). Shifting cultivation in northeastern region of India-status and strategies for sustainable development. Indian Forester138 (1), 52-62.
4. Moody, K. (1975). Weeds and shifting cultivation. PANS Pest Articles & News Summaries21 (2), 188-194.
5. Pandey, A., Chaudhry, S., Sharma, A., Choudhary, V. S., Malviya, M. K., Chamoli, S., … & Palni, L. M. S. (2011). Recovery of Bacillus and Pseudomonas spp. from the ‘Fired Plots’ under shifting cultivation in Northeast India. Current microbiology62 (1), 273-280.
6. Gafur, A., Borggaard, O. K., Jensen, J. R., & Petersen, L. (2000). Changes in soil nutrient content under shifting cultivation in the Chittagong Hill Tracts of Bangladesh. Geografisk Tidsskrift-Danish Journal of Geography100 (1), 37-46.
7. Toky, O. P., & Ramakrishnan, P. S. (1981). Run-off and infiltration losses related to shifting agriculture (jhum) in northeastern India. Environmental Conservation8 (4), 313-321.
8. Ramakrishnan, P. S., & Toky, O. P. (1981). Soil nutrient status of hill agro-ecosystems and recovery pattern after slash and burn agriculture (jhum) in north-eastern India. Plant and soil60 (1), 41-64.
9. Mishra, B. K., & Ramakrishnan, P. S. (1983). Slash and burn agriculture at higher elevations in north-eastern India. I. Sediment, water and nutrient losses. Agriculture, Ecosystems & Environment9 (1), 69-82.
10. Mishra, B. K., & Ramakrishnan, P. S. (1983). Slash and burn agriculture at higher elevations in north-eastern India. II. Soil fertility changes. Agriculture, Ecosystems & Environment9 (1), 83-96.
11. Feng, Y., & Balkcom, K. S. (2017). Nutrient cycling and soil biology in row crop systems under intensive tillage. In Soil health and intensification of agroecosytems  (pp. 231-255). Academic Press.
12. Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K. M., Arcenegui, V., & Mataix-Beneyto, J. (2009). Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Applied Soil Ecology42 (3), 315-323.
13. Yang, Y., Wang, N., Guo, X., Zhang, Y., & Ye, B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One12 (5), e0178425.
14. Sun, H., Santalahti, M., Pumpanen, J., Köster, K., Berninger, F., Raffaello, T., … & Heinonsalo, J. (2016). Bacterial community structure and function shift across a northern boreal forest fire chronosequence. Scientific Reports6 (1), 1-12.
15. Funakawa, S., Tanaka, S., Kaewkhongkha, T., Hattori, T., & Yonebayashi, K. (1997). Physicochemical properties of the soils associated with shifting cultivation in Northern Thailand with special reference to factors determining soil fertility. Soil science and plant nutrition43 (3), 665-679.
16. Hartmann, M., Howes, C. G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., … & Mohn, W. W. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. The ISME journal6 (12), 2199-2218.
17. Hartmann, M., Niklaus, P. A., Zimmermann, S., Schmutz, S., Kremer, J., Abarenkov, K., … & Frey, B. (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. The ISME journal8 (1), 226-244.
18. Urbanová, M., Šnajdr, J., & Baldrian, P. (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry84 , 53-64.
19. Malacrinò, A., Karley, A. J., Schena, L., & Bennett, A. E. (2020). Soil microbial diversity impacts plant microbiomes more than herbivory. bioRxiv .
20. Thokchom, E., Thakuria, D., Kalita, M. C., Sharma, C. K., & Talukdar, N. C. (2017). Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology79 , 48-56.
21. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews59 (1), 143-169.
22. Nakatsu, C. H., Torsvik, V., & Øvreås, L. (2000). Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal64 (4), 1382-1388.
23. Boughner, L. A., & Singh, P. (2016). Microbial Ecology: Where are we now?. Postdoc journal: a journal of postdoctoral research and postdoctoral affairs4 (11), 3.
24. Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics , 115-175.
25. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., … & Backhaus, H. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of bacteriology178 (19), 5636-5643.
26. Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S., & Thompson, W. F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature protocols1 (5), 2320.
27. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature methods7 (5), 335-336.
28. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature methods13 (7), 581-583.
29. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution30 (4), 772-780.
30. Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one5 (3), e9490.
31. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research41 (D1), D590-D596.
32. Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ4 , e2584.
33. Bokulich, N. A., Zhang, Y., Dillon, M., Rideout, J. R., Bolyen, E., Li, H., … & Caporaso, J. G. (2017). q2-longitudinal: a QIIME 2 plugin for longitudinal and paired-sample analyses of microbiome data. BioRxiv , 223974.
34. Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology31 (9), 814-821.
35. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic acids research38 (suppl_1), D355-D360.
36. Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics30 (21), 3123-3124.
37. Rivals, I., Personnaz, L., Taing, L., & Potier, M. C. (2007). Enrichment or depletion of a GO category within a class of genes: which test?. Bioinformatics23 (4), 401-407.
38. Newcombe, R. G. (1998). Two‐sided confidence intervals for the single proportion: comparison of seven methods. Statistics in medicine17 (8), 857-872.
39. Abdi, H. (2007). Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of measurement and statistics3 , 103-107.
40. Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A., & Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME journal8 (8), 1577-1587.
41. Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences95 (12), 6578-6583.
42. Liebner, S., Harder, J., & Wagner, D. (2008). Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. International microbiology11 (3), 195-202.
43. Yang, J. Y., Lee, Y. S., Kim, Y., Lee, S. H., Ryu, S., Fukuda, S., … & Kweon, M. N. (2017). Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal immunology10 (1), 104-116.
44. Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME journal3 (4), 442-453.
45. le Roes-Hill, M., Khan, N., & Burton, S. G. (2011). Actinobacterial peroxidases: an unexplored resource for biocatalysis. Applied biochemistry and biotechnology164 (5), 681-713.
46. Shivlata, L., & Satyanarayana, T. (2017). Actinobacteria in agricultural and environmental sustainability. In Agro-environmental sustainability  (pp. 173-218). Springer, Cham.
47. Fierer, N. (2015, December). Verrucomicrobia and their role in soil methanol consumption. In AGU Fall Meeting Abstracts  (Vol. 2015, pp. B21J-02).
48. Singh, S. B., Saha, S., Dutta, S. K., Singh, A. R., & Boopathi, T. (2017). Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India. Catena156 , 10-17.
49. Shankar, U., & Tripathi, R. S. (1997). Evaluating second year cropping on jhum fallows in Mizoram, north-eastern India: Soil fertility. Journal of biosciences22 (5), 615-625.
50. Loyola-Vargas, V. M., Broeckling, C. D., Badri, D., & Vivanco, J. M. (2007). Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta225 (2), 301-310.
51. Sugiyama, A., Shitan, N., & Yazaki, K. (2007). Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiology144 (4), 2000-2008.
52. Badri, D. V., Loyola-Vargas, V. M., Broeckling, C. D., De-la-Peña, C., Jasinski, M., Santelia, D., … & Vivanco, J. M. (2008). Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiology146 (2), 762-771.
53. Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, cell & environment32 (6), 666-681.
54. Badri, D. V., Quintana, N., El Kassis, E. G., Kim, H. K., Choi, Y. H., Sugiyama, A., … & Vivanco, J. M. (2009). An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiology151 (4), 2006-2017.
55. Hinsa, S. M., Espinosa‐Urgel, M., Ramos, J. L., & O’Toole, G. A. (2003). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular microbiology49 (4), 905-918.
56. Guggenberger, G., Frey, S. D., Six, J., Paustian, K., & Elliott, E. T. (1999). Bacterial and fungal cell‐wall residues in conventional and no‐tillage agroecosystems. Soil Science Society of America Journal63 (5), 1188-1198.
57. Glaser, B., Turrión, M. B., & Alef, K. (2004). Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis. Soil Biology and Biochemistry36 (3), 399-407.
58. Whitfield, C., & Trent, M. S. (2014). Biosynthesis and export of bacterial lipopolysaccharides. Annual review of biochemistry83 , 99-128.
59. Cania, B., Vestergaard, G., Krauss, M., Fliessbach, A., Schloter, M., & Schulz, S. (2019). A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environmental Microbiome14 (1), 1-14.
60. Jacques, M. (1996). Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends in microbiology4 (10), 408-410.
61. Sutherland, I. W. (2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147 (1), 3-9.
62. Hutcherson, J. A., Sinclair, K. M., Belvin, B. R., Gui, Q., Hoffman, P. S., & Lewis, J. P. (2017). Amixicile, a novel strategy for targeting oral anaerobic pathogens. Scientific reports7 (1), 1-14.
63. Cheng, X. Y., Tian, X. L., Wang, Y. S., Lin, R. M., Mao, Z. C., Chen, N., & Xie, B. Y. (2013). Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Scientific reports3 (1), 1-10.
64. Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: a-state-of-art. Reviews in Environmental Science and Bio/Technology13 (4), 429-466.
65. Zhuang, L., Tang, Z., Ma, J., Yu, Z., Wang, Y., & Tang, J. (2019). Enhanced anaerobic biodegradation of benzoate under sulfate-reducing conditions with conductive iron-oxides in sediment of Pearl River Estuary. Frontiers in microbiology10 , 374.
66. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS microbiology ecology68 (1), 1-13.
67. Grayston, S. J., Wang, S., Campbell, C. D., & Edwards, A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry30 (3), 369-378.
68. Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters11 (3), 296-310.